Second-order spectra for quadratic nonlinear systems by Volterra functional series: Analytical description and numerical simulation

2008 ◽  
Vol 22 (8) ◽  
pp. 1882-1895 ◽  
Author(s):  
P. Marzocca ◽  
J.M. Nichols ◽  
A. Milanese ◽  
M. Seaver ◽  
S.T. Trickey
1984 ◽  
Vol 49 (4) ◽  
pp. 911-919 ◽  
Author(s):  
Milan Kočiřík ◽  
Arkadii G. Bezus ◽  
Arlette Zikánová ◽  
Irina T. Erashko ◽  
Michail M. Dubinin ◽  
...  

An analytical description is presented of the temperature curves describing adsorption on thin zeolite plates. The solution, based on the model of simultaneous mass and heat transport was obtained by linearization of the kinetic equations. A method is proposed for verification of the plausibility of the model and for evaluation of the kinetic data by numerical simulation of the temperature curves.


1989 ◽  
Vol 111 (1) ◽  
pp. 87-93 ◽  
Author(s):  
A. Mioduchowski ◽  
M. G. Faulkner ◽  
B. Kim

Optimization of a second-order multiply-connected inhomogeneous boundary-value problem was considered in terms of elastic torsion. External boundary and material proportions are the applied constraints in finding optimal internal configurations of the cross section. The optimization procedure is based on the numerical simulation of the membrane analogy and the results obtained indicate that the procedure is usable as an engineering tool. Optimal solutions are obtained for some representative cases of the torsion problem and they are presented in the form of tables and figures.


1970 ◽  
Vol 30 ◽  
pp. 59-75
Author(s):  
M Alhaz Uddin ◽  
M Abdus Sattar

 In this paper, the second order approximate solution of a general second order nonlinear ordinary differential system, modeling damped oscillatory process is considered. The new analytical technique based on the work of He’s homotopy perturbation method is developed to find the periodic solution of a second order ordinary nonlinear differential system with damping effects. Usually the second or higher order approximate solutions are able to give better results than the first order approximate solutions. The results show that the analytical approximate solutions obtained by homotopy perturbation method are uniformly valid on the whole solutions domain and they are suitable not only for strongly nonlinear systems, but also for weakly nonlinear systems. Another advantage of this new analytical technique is that it also works for strongly damped, weakly damped and undamped systems. Figures are provided to show the comparison between the analytical and the numerical solutions. Keywords: Homotopy perturbation method; damped oscillation; nonlinear equation; strong nonlinearity. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 30 (2010) 59-75  DOI: http://dx.doi.org/10.3329/ganit.v30i0.8504


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
J. Granata ◽  
L. Xu ◽  
Z. Rusak ◽  
S. Wang

Current simulations of swirling flows in pipes are limited to relatively low Reynolds number flows (Re < 6000); however, the characteristic Reynolds number is much higher (Re > 20,000) in most of engineering applications. To address this difficulty, this paper presents a numerical simulation algorithm of the dynamics of incompressible, inviscid-limit, axisymmetric swirling flows in a pipe, including the vortex breakdown process. It is based on an explicit, first-order difference scheme in time and an upwind, second-order difference scheme in space for the time integration of the circulation and azimuthal vorticity. A second-order Poisson equation solver for the spatial integration of the stream function in terms of azimuthal vorticity is used. In addition, when reversed flow zones appear, an averaging step of properties is applied at designated time steps. This adds slight artificial viscosity to the algorithm and prevents growth of localized high-frequency numerical noise inside the breakdown zone that is related to the expected singularity that must appear in any flow simulation based on the Euler equations. Mesh refinement studies show agreement of computations for various mesh sizes. Computed examples of flow dynamics demonstrate agreement with linear and nonlinear stability theories of vortex flows in a finite-length pipe. Agreement is also found with theoretically predicted steady axisymmetric breakdown states in a pipe as flow evolves to a time-asymptotic state. These findings indicate that the present algorithm provides an accurate prediction of the inviscid-limit, axisymmetric breakdown process. Also, the numerical results support the theoretical predictions and shed light on vortex dynamics at high Re.


Sign in / Sign up

Export Citation Format

Share Document