Model and experimental verification of a four degrees-of-freedom rotor considering combined eccentricity and electromagnetic effects

2022 ◽  
Vol 169 ◽  
pp. 108740
Author(s):  
Feng Liu ◽  
Changle Xiang ◽  
Hui Liu ◽  
Xing Chen ◽  
Fuzhou Feng ◽  
...  
1992 ◽  
Vol 114 (1) ◽  
pp. 131-136 ◽  
Author(s):  
S. Nagarajan ◽  
D. A. Turcic

In this work a theoretical method is developed to identify critical speeds for elastic linkage systems. Critical speeds are input operating speeds where the response of the system is larger when compared to neighboring noncritical speeds. A survey of the literature reveals that theoretical methods of determining the critical operating speeds with experimental verification have not been applied by researchers for linkage systems with large number of elastic degrees of freedom and with all links considered as elastic members. Research works that address this problem are usually limited to mechanisms with only one link treated as an elastic member. The method of determining critical speeds in this work is an efficient implementation of Floquet theory, and is applicable for mechanism systems with large numbers of elastic degrees of freedom and with all links considered as elastic members. Experimental verification for the results obtained using this approach is provided in Nagarajan and Turcic (1991).


1989 ◽  
Vol 111 (1) ◽  
pp. 149-155 ◽  
Author(s):  
J. M. de Mul ◽  
J. M. Vree ◽  
D. A. Maas

A new, general and consistent mathematical model of highly modular character is presented for calculation of the equilibrium and associated load distribution in rolling element bearings. The bearings may be loaded and displaced in five degrees of freedom. High speed rolling element loading is considered, internal friction is neglected, the material is assumed linearly elastic and the bearing rings are modelled as rigid except for local contact deformation. Either classical Hertzian contact analysis or modern non-Hertzian contact analysis of sophisticated or approximate character is used as applicable. The bearing stiffness matrix is computed analytically and used internally in the iterative bearing equilibrium calculation; its final values may be used for other purposes such as (rotor) dynamics analysis. In Part I, the general theory and application to ball bearings is presented. In Part II, application of the general theory to ro´ller bearings and an experimental verification are presented.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


2020 ◽  
Vol 43 ◽  
Author(s):  
David Spurrett

Abstract Comprehensive accounts of resource-rational attempts to maximise utility shouldn't ignore the demands of constructing utility representations. This can be onerous when, as in humans, there are many rewarding modalities. Another thing best not ignored is the processing demands of making functional activity out of the many degrees of freedom of a body. The target article is almost silent on both.


2016 ◽  
Vol 23 (4) ◽  
pp. 131-140 ◽  
Author(s):  
Philip Furley ◽  
Karsten Schul ◽  
Daniel Memmert
Keyword(s):  

Zusammenfassung. Das Ziel des vorliegenden Beitrages ist es anhand eines vielverwendeten Paradigmas in der Sportwissenschaft – dem Experten-Novizen-Vergleich – zu prüfen, ob die momentane Vertrauenskrise in der Psychologie ebenfalls die Sportpsychologie betreffen könnte. Anhand einer exemplarischen Studie zeigen wir, dass es innerhalb dieses Paradigmas zu kontroversen Befunden kommt, welche durch die vermuteten Ursachen der Vertrauenskrise (Researcher Degrees of Freedom, kleine Stichprobengrößen) erklärt sein könnten. Zusätzlich argumentieren wir, dass weitere Faktoren (Konfundierung, Stichprobengrößen, Rosenthal Effekt, Expertise-Definition) innerhalb dieses Paradigmas die Reproduzierbarkeit von Erkenntnissen in Frage stellen. Wir diskutieren mögliche Maßnahmen, wie die dargestellten Probleme des Experten-Novizen-Paradigmas in zukünftigen Forschungsarbeiten gelöst werden können.


Sign in / Sign up

Export Citation Format

Share Document