scholarly journals Input-dependent synaptic suppression by pregabalin in the central amygdala in male mice with inflammatory pain

2021 ◽  
pp. 100078
Author(s):  
Sumii Yamamoto ◽  
Yukari Takahashi ◽  
Fusao Kato
eNeuro ◽  
2021 ◽  
pp. ENEURO.0189-21.2021
Author(s):  
M Zhu ◽  
M Echeveste Sanchez ◽  
EA Douglass ◽  
JV Jahad ◽  
TD Hanback ◽  
...  

Pain ◽  
2017 ◽  
Vol 158 (7) ◽  
pp. 1314-1322 ◽  
Author(s):  
Douglas M. Lopes ◽  
Franziska Denk ◽  
Kim I. Chisholm ◽  
Tesha Suddason ◽  
Camille Durrieux ◽  
...  

2021 ◽  
Author(s):  
Akila Ram ◽  
Taylor Edwards ◽  
Ashley McCarty ◽  
Leela Afrose ◽  
Max V McDermott ◽  
...  

Chronic pain is a growing public health crisis that requires exigent and efficacious therapeutics. GPR171 is a promising therapeutic target that is widely expressed through the brain, including within the descending pain modulatory regions. Here, we explore the therapeutic potential of the GPR171 agonist, MS15203, in its ability to alleviate chronic pain in male and female mice using a once-daily systemic dose (10mg/kg, i.p.) of MS15203 over the course of 5 days. We found that in our models of Complete Freunds Adjuvant (CFA)-induced inflammatory pain and chemotherapy-induced peripheral neuropathy (CIPN), MS15203 did not reduce thermal hypersensitivity and allodynia, respectively, in female mice. On the other hand, MS15203 treatment decreased the duration of thermal hypersensitivity in CFA-treated male mice following 3 days of once-daily administration. MS15203 treatment also produced an improvement in allodynia in male mice, but not female mice, in neuropathic pain after 5 days of treatment. Gene expression of GPR171 and that of its endogenous ligand BigLEN, encoded by the gene PCSK1N, were unaltered within the periaqueductal gray in both male and female mice following inflammatory and neuropathic pain. However, following neuropathic pain in male mice, the protein levels of GPR171 were decreased in the periaqueductal gray. Treatment with MS15203 then rescued the protein levels of GPR171 in the periaqueductal gray of these mice. Taken together, our results identify GPR171 as a GPCR that displays sexual dimorphism in alleviation of chronic pain. Further, our results suggest that GPR171 and MS15203 have demonstrable therapeutic potential in the treatment of chronic pain.


2020 ◽  
Author(s):  
Elizabeth M Avegno ◽  
Chelsea R Kasten ◽  
William B Snyder ◽  
Leslie K Kelley ◽  
Thomas D Lobell ◽  
...  

AbstractThe neural adaptations that occur during the transition to alcohol dependence are not entirely understood, but may include a gradual recruitment of brain stress circuitry by mesolimbic reward circuitry that is activated during early stages of alcohol use. Here, we focused on dopaminergic and non-dopaminergic projections from the ventral tegmental area (VTA), important for mediating acute alcohol reinforcement, to the central nucleus of the amygdala (CeA), important for alcohol dependence-related negative affect and escalated alcohol drinking. The VTA projects directly to the CeA, but the functional relevance of this circuit is not fully established. Therefore, we combined retrograde and anterograde tracing, anatomical, and electrophysiological experiments in mice and rats to demonstrate that the CeA receives input from both dopaminergic and non-dopaminergic projection neurons primarily from the lateral VTA. We then used slice electrophysiology and fos immunohistochemistry to test the effects of alcohol dependence on activity and activation profiles of CeA-projecting neurons in the VTA. Our data indicate that alcohol dependence activates midbrain projections to the central amygdala, suggesting that VTA projections may trigger plasticity in the CeA during the transition to alcohol dependence and that this circuit may be involved in mediating behavioral dysregulation associated with alcohol dependence.


2021 ◽  
Vol 2 ◽  
Author(s):  
Akila Ram ◽  
Taylor Edwards ◽  
Ashley McCarty ◽  
Leela Afrose ◽  
Max V. McDermott ◽  
...  

Chronic pain is a growing public health crisis that requires exigent and efficacious therapeutics. GPR171 is a promising therapeutic target that is widely expressed through the brain, including within the descending pain modulatory regions. Here, we explore the therapeutic potential of the GPR171 agonist, MS15203, in its ability to alleviate chronic pain in male and female mice using a once-daily systemic dose (10 mg/kg, i.p.) of MS15203 over the course of 5 days. We found that in our models of Complete Freund's Adjuvant (CFA)-induced inflammatory pain and chemotherapy-induced peripheral neuropathy (CIPN), MS15203 did not alleviate thermal hypersensitivity and allodynia, respectively, in female mice. On the other hand, MS15203 treatment decreased the duration of thermal hypersensitivity in CFA-treated male mice following 3 days of once-daily administration. MS15203 treatment also produced an improvement in allodynia in male mice, but not female mice, in neuropathic pain after 5 days of treatment. Gene expression of GPR171 and that of its endogenous ligand BigLEN, encoded by the gene PCSK1N, were unaltered within the periaqueductal gray (PAG) in both male and female mice following inflammatory and neuropathic pain. However, following neuropathic pain in male mice, the protein levels of GPR171 were decreased in the PAG. Treatment with MS15203 then rescued the protein levels of GPR171 in the PAG of these mice. Taken together, our results identify GPR171 as a GPCR that displays sexual dimorphism in alleviation of chronic pain. Further, our results suggest that GPR171 and MS15203 have demonstrable therapeutic potential in the treatment of chronic pain.


2018 ◽  
Author(s):  
CP Normandeau ◽  
ML Torruella Suárez ◽  
P Sarret ◽  
ZA McElligott ◽  
EC Dumont

AbstractNeuropeptides are often co-expressed in neurons but their neurophysiological effects are commonly studied individually. Multiple neuropeptides may therefore be simultaneously released to coordinate proper neural circuit function. Here, we triggered the release of endogenous neuropeptides in brain slices from male mice to better understand the modulation of central amygdala (CeA) inhibitory inputs onto oval (ov) BNST neurons. We found that locally-released neurotensin (NT) and dynorphin (Dyn) antagonistically regulated CeA inhibitory inputs onto ovBNST neurons. NT and Dyn respectively increased and decreased CeA-to-ovBNST inhibitory inputs through NT receptor 1 (NTR1) and kappa opioid receptor (KOR). Additionally, NT and Dyn mRNAs were highly co-localized in ovBNST neurons suggesting that they may be released from the same cells. Together, we showed that NT and Dyn are key modulators of CeA inputs to ovBNST, paving the way to determine whether different conditions or states can alter the neuropeptidergic regulation of this particular brain circuit.


Sign in / Sign up

Export Citation Format

Share Document