thermal hypersensitivity
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sibel Ozcan ◽  
Muhammed Mirac Kelestemur ◽  
Munevver Gizem Hekim ◽  
Ozgur Bulmus ◽  
Ferah Bulut ◽  
...  

Abstract Neuropathic pain is primarily caused by nervous system lesions or dysfunction. Evidence strongly suggests that obesity, diabetes and cancer are common in chronic pain conditions, and pain complaints are common in these individuals. Recent studies indicate presence of a strong link between adipokines and neuropathic pain. However, the effects of asprosin, a novel adipokine, on neuropathic pain have not been studied in animal modelsMouse models were employed to investigate the antinociceptive effectiveness of asprosin in the treatment of three types of neuropathic pain, with metabolic (streptozocin/STZ), toxic (oxaliplatin/OXA), and traumatic (sciatic nerve ligation/CCI [chronic constriction nerve injury]) etiologies, respectively. Changes in nociceptive behaviors were assessed relative to controls using thermal (the hot plate and cold plate tests, at 50 °C and 4 °C respectively) and mechanical pain (Von Frey test) tests at baseline and 30, 60, 120 and 180 minutes after asprosin administration. Serum level of asprosin was quantified by ELISA. In all three neuropathic pain models (STZ, OXA and CCI), asprosin administration significantly reduced both mechanical and thermal hypersensitivity, indicating that it exhibits a clear-cut antihypersensitivity effect in the analyzed neuropathic pain models. Asprosin levels were significantly lower in three types of neuropathic pain compare to controls (p < 0.05). The results yielded by the present study suggest that asprosin exhibits an analgesic effect in the neuropathic pain models and may have clinical utility in alleviating chronic pain associated with disease and injury originating from peripheral structures.


2021 ◽  
Vol 22 (20) ◽  
pp. 11074
Author(s):  
Anna Piotrowska ◽  
Katarzyna Ciapała ◽  
Katarzyna Pawlik ◽  
Klaudia Kwiatkowski ◽  
Ewelina Rojewska ◽  
...  

Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.


2021 ◽  
Vol 14 (10) ◽  
pp. 975
Author(s):  
Sara Ilari ◽  
Filomena Lauro ◽  
Luigino Antonio Giancotti ◽  
Valentina Malafoglia ◽  
Concetta Dagostino ◽  
...  

Paclitaxel is a chemotherapeutic drug used for cancer treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a common major dose-limiting side effect of many chemotherapeutic agents, including paclitaxel. CIPN is accompanied by mechanical and thermal hypersensitivity that resolves within weeks, months, or years after drug termination. To date, there is no available preventive strategy or effective treatment for CIPN due to the fact that its etiology has not been fully explained. It is clear that free radicals are implicated in many neurodegenerative diseases and recent studies have shown the important role of oxidative stress in development of CIPN. Here, we observed how, in rats, the administration of a natural antioxidant such as the bergamot polyphenolic extract (BPF), can play a crucial role in reducing CIPN. Paclitaxel administration induced mechanical allodynia and thermal hyperalgesia, which began to manifest on day seven, and reached its lowest levels on day fifteen. Paclitaxel-induced neuropathic pain was associated with nitration of proteins in the spinal cord including MnSOD, glutamine synthetase, and glutamate transporter GLT-1. This study showed that the use of BPF, probably by inhibiting the nitration of crucial proteins involved in oxidative stress, improved paclitaxel-induced pain behaviors relieving mechanical allodynia, thermal hyperalgesia, thus preventing the development of chemotherapy-induced neuropathic pain.


2021 ◽  
Vol 22 (19) ◽  
pp. 10199
Author(s):  
Ji-Hye Song ◽  
Seul-Ki Won ◽  
Geun-Hyang Eom ◽  
Da-Som Lee ◽  
Byung-Jin Park ◽  
...  

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is associated with various symptoms, such as depression, pain, and fatigue. To date, the pathological mechanisms and therapeutics remain uncertain. The purpose of this study was to investigate the effect of myelophil (MYP), composed of Astragali Radix and Salviaemiltiorrhizae Radix, on depression, pain, and fatigue behaviors and its underlying mechanisms. Reserpine (2 mg/kg for 10 days, intraperitoneally) induced depression, pain, and fatigue behaviors in mice. MYP treatment (100 mg/kg for 10 days, intragastrically) significantly improved depression behaviors, mechanical and thermal hypersensitivity, and fatigue behavior. MYP treatment regulated the expression of c-Fos, 5-HT1A/B receptors, and transforming growth factor β (TGF-β) in the brain, especially in the motor cortex, hippocampus, and nucleus of the solitary tract. MYP treatment decreased ionized calcium binding adapter molecule 1 (Iba1) expression in the hippocampus and increased tyrosine hydroxylase (TH) expression and the levels of dopamine and serotonin in the striatum. MYP treatment altered inflammatory and anti-oxidative-related mRNA expression in the spleen and liver. In conclusion, MYP was effective in recovering major symptoms of ME/CFS and was associated with the regulation of dopaminergic and serotonergic pathways and TGF-β expression in the brain, as well as anti-inflammatory and anti-oxidant mechanisms in internal organs.


2021 ◽  
Vol 2 ◽  
Author(s):  
Akila Ram ◽  
Taylor Edwards ◽  
Ashley McCarty ◽  
Leela Afrose ◽  
Max V. McDermott ◽  
...  

Chronic pain is a growing public health crisis that requires exigent and efficacious therapeutics. GPR171 is a promising therapeutic target that is widely expressed through the brain, including within the descending pain modulatory regions. Here, we explore the therapeutic potential of the GPR171 agonist, MS15203, in its ability to alleviate chronic pain in male and female mice using a once-daily systemic dose (10 mg/kg, i.p.) of MS15203 over the course of 5 days. We found that in our models of Complete Freund's Adjuvant (CFA)-induced inflammatory pain and chemotherapy-induced peripheral neuropathy (CIPN), MS15203 did not alleviate thermal hypersensitivity and allodynia, respectively, in female mice. On the other hand, MS15203 treatment decreased the duration of thermal hypersensitivity in CFA-treated male mice following 3 days of once-daily administration. MS15203 treatment also produced an improvement in allodynia in male mice, but not female mice, in neuropathic pain after 5 days of treatment. Gene expression of GPR171 and that of its endogenous ligand BigLEN, encoded by the gene PCSK1N, were unaltered within the periaqueductal gray (PAG) in both male and female mice following inflammatory and neuropathic pain. However, following neuropathic pain in male mice, the protein levels of GPR171 were decreased in the PAG. Treatment with MS15203 then rescued the protein levels of GPR171 in the PAG of these mice. Taken together, our results identify GPR171 as a GPCR that displays sexual dimorphism in alleviation of chronic pain. Further, our results suggest that GPR171 and MS15203 have demonstrable therapeutic potential in the treatment of chronic pain.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257439
Author(s):  
Young Yeon Kim ◽  
Jeong-Hyun Yoon ◽  
Jee-Hyun Um ◽  
Dae Jin Jeong ◽  
Dong Jin Shin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anahit H. Hovhannisyan ◽  
Hyeonwi Son ◽  
Jennifer Mecklenburg ◽  
Priscilla Ann Barba-Escobedo ◽  
Meilinn Tram ◽  
...  

AbstractTrigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3–L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3–L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.


2021 ◽  
Vol 8 (5) ◽  
pp. e1028
Author(s):  
Takayuki Fujii ◽  
Eun-Jae Lee ◽  
Yukino Miyachi ◽  
Ryo Yamasaki ◽  
Young-Min Lim ◽  
...  

ObjectivesTo assess the prevalence of antiplexin D1 antibodies (plexin D1-immunoglobulin G [IgG]) in small fiber neuropathy (SFN) and the effects of these antibodies in vivo.MethodsWe developed an ELISA for plexin D1-IgG using a recombinant extracellular domain of human plexin D1 containing the major epitope and sera from 58 subjects previously studied with a standard tissue-based indirect immunofluorescence assay (TBA). We screened 63 patients with probable SFN and 55 healthy controls (HCs) for serum plexin D1-IgG using ELISA. The results were confirmed by TBA. IgG from 3 plexin D1-IgG-positive patients, 2 plexin D1-IgG-negative inflammatory disease controls, and 2 HCs was intrathecally injected into mice, which were assessed for mechanical and thermal hypersensitivity 24 and 48 hours after injection.ResultsThe ELISA had 75% sensitivity and 100% specificity using the TBA as a standard, and the coincidence rate of ELISA to TBA was 96.6% (56/58). The frequency of plexin D1-IgG was higher in patients with SFN than in HCs (12.7% [8/63] vs 0.0% [0/55], p = 0.007). Purified IgG from all 3 plexin D1-IgG-positive patients, but not 2 plexin D1-IgG-negative patients, induced significant mechanical and/or thermal hypersensitivity compared with IgG from HCs. In mice injected with plexin D1-IgG-positive but not D1-IgG-negative patient IgG, phosphorylated extracellular signal-regulated protein kinase immunoreactivity, an activation marker, was confined to small dorsal root ganglion neurons and was significantly more abundant than in mice injected with HC IgG.ConclusionsPlexin D1-IgG is pathogenic but with low prevalence and is a potential biomarker for immunotherapy in SFN.


2021 ◽  
Author(s):  
Akila Ram ◽  
Taylor Edwards ◽  
Ashley McCarty ◽  
Leela Afrose ◽  
Max V McDermott ◽  
...  

Chronic pain is a growing public health crisis that requires exigent and efficacious therapeutics. GPR171 is a promising therapeutic target that is widely expressed through the brain, including within the descending pain modulatory regions. Here, we explore the therapeutic potential of the GPR171 agonist, MS15203, in its ability to alleviate chronic pain in male and female mice using a once-daily systemic dose (10mg/kg, i.p.) of MS15203 over the course of 5 days. We found that in our models of Complete Freunds Adjuvant (CFA)-induced inflammatory pain and chemotherapy-induced peripheral neuropathy (CIPN), MS15203 did not reduce thermal hypersensitivity and allodynia, respectively, in female mice. On the other hand, MS15203 treatment decreased the duration of thermal hypersensitivity in CFA-treated male mice following 3 days of once-daily administration. MS15203 treatment also produced an improvement in allodynia in male mice, but not female mice, in neuropathic pain after 5 days of treatment. Gene expression of GPR171 and that of its endogenous ligand BigLEN, encoded by the gene PCSK1N, were unaltered within the periaqueductal gray in both male and female mice following inflammatory and neuropathic pain. However, following neuropathic pain in male mice, the protein levels of GPR171 were decreased in the periaqueductal gray. Treatment with MS15203 then rescued the protein levels of GPR171 in the periaqueductal gray of these mice. Taken together, our results identify GPR171 as a GPCR that displays sexual dimorphism in alleviation of chronic pain. Further, our results suggest that GPR171 and MS15203 have demonstrable therapeutic potential in the treatment of chronic pain.


2021 ◽  
Vol 338 ◽  
pp. 113607
Author(s):  
Stacey Anne Gould ◽  
Matthew White ◽  
Anna L. Wilbrey ◽  
Erzsébet Pór ◽  
Michael Philip Coleman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document