Late Pleistocene highstand and recession of a small, high-altitude pluvial lake, Jakes Valley, central Great Basin, USA

2006 ◽  
Vol 65 (1) ◽  
pp. 179-186 ◽  
Author(s):  
Antonio Francisco García ◽  
Martin Stokes

AbstractModels of factors controlling late Pleistocene pluvial lake-level fluctuations in the Great Basin are evaluated by dating lake levels in Jakes Valley. “Jakes Lake” rose to a highstand at 13,870 ± 50 14C Yr B.P., receded to a stillstand at 12,440 ± 50 14C yr B.P., and receded steadily to desiccation thereafter. The Jakes Lake highstand is roughly coincident with highstands of lakes Bonneville, Lahontan and Russell. The rise to highstand and recession of Jakes Lake were most likely controlled by a storm track steered by the polar jet stream. The final stillstand of Jakes Lake helps constrain timing of northward retreat of the polar jet stream during the Pleistocene–Holocene transition.

1979 ◽  
Vol 12 (1) ◽  
pp. 83-118 ◽  
Author(s):  
F. Alayne Street ◽  
A. T. Grove

This paper presents selected world maps of lake-level fluctuations since 30,000 yr B.P. These are based on a literature survey of 141 lake basins with radiocarbon-dated chronologies. The resulting patterns are subcontinental in scale and show orderly variations in space and time. They reflect substantial changes in continental precipitation, evaporation, and runoff, which are due to glacial/interglacial fluctuations in the atmospheric and oceanic circulations. In the tropics, high lake levels are essentially an interglacial or interstadial phenomenon, although there are important exceptions. Since extensive lakes during the Holocene corresponded with relatively high sea-surface temperatures, and therefore presumably with high evaporation rates on land, they are interpreted as the result of higher precipitation. Tropical aridity culminated in most areas at, or just after, the glacial maximum, although the present day is also characterized by a below-average abundance of surface water. In extratropical regions the mapped patterns are more complex. They vary markedly with latitude and proximity to major ice sheets. In these areas, evidence is at present insufficient to evaluate the relative contributions of precipitation and temperature to the observed lake-level record.


2003 ◽  
Vol 60 (3) ◽  
pp. 294-306 ◽  
Author(s):  
Kenneth D. Adams

AbstractNew dating in the Carson Sink at the termini of the Humboldt and Carson rivers in the Great Basin of the western United States indicates that lakes reached elevations of 1204 and 1198 m between 915 and 652 and between 1519 and 1308 cal yr B.P., respectively. These dates confirm Morrison's original interpretation (Lake Lahontan: Geology of the Southern Carson Desert, Professional Paper 40, U.S. Geol. Survey, 1964) that these shorelines are late Holocene features, rather than late Pleistocene as interpreted by later researchers. Paleohydrologic modeling suggests that discharge into the Carson Sink must have been increased by a factor of about four, and maintained for decades, to account for the 1204-m lake stand. The hydrologic effects of diversions of the Walker River to the Carson Sink were probably not sufficient, by themselves, to account for the late Holocene lake-level rises. The decadal-long period of increased runoff represented by the 1204-m lake is also reflected in other lake records and in tree ring records from the western United States.


2020 ◽  
pp. 1-22
Author(s):  
Michael Klinge ◽  
Frank Schlütz ◽  
Anja Zander ◽  
Daniela Hülle ◽  
Ochirbat Batkhishig ◽  
...  

Abstract Glacial and lacustrine sediments from the Mongolian Altai provide paleoclimatic information for the late Pleistocene in Mongolia, for which only a few sufficiently studied archives exist. Glacial stages referred to global cooling events are reported for the last glacial maximum (27–21 ka) and the late glacial period (18–16 ka). Sedimentary archives from the first part of the last glacial period are infrequent. We present proxy data for this period from two different archives (88–63 and 57–30 ka). Due to the limitation of effective moisture, an increase of precipitation is discussed as one trigger for glacier development in the cold-arid regions of central Asia. Our pollen analysis from periods of high paleolake levels in small catchments indicate that the vegetation was sparse and of dry desert type between 42–29 and 17–11 ka. This apparent contradiction between high lake levels and dry landscape conditions, the latter supported by intensified eolian processes, points to lower temperatures and cooler conditions causing reduced evaporation to be the main trigger for the high lake levels during glacier advances. Rising temperatures that cause melting of glacier and permafrost ice and geomorphological processes play a role in paleolake conditions. Interpreting lake-level changes as regional or global paleoclimate signals requires detailed investigation of geomorphological settings and mountain–basin relationships.


2008 ◽  
Vol 23 (5) ◽  
pp. 608-643 ◽  
Author(s):  
Kenneth D. Adams ◽  
Ted Goebel ◽  
Kelly Graf ◽  
Geoffrey M. Smith ◽  
Anna J. Camp ◽  
...  

2020 ◽  
Vol 47 (1) ◽  
pp. 61 ◽  
Author(s):  
Alejandro Montes ◽  
Fernando Santiago ◽  
Mónica Salemme ◽  
Ramiro López

Laguna Las Vueltas (LLV) area retains the morphology of a late Pleistocene watershed that was flooded during a mid-Holocene marine transgression. Sediments associated with a paleosol dated at 22,582 cal yr BP reflect subaerial exposure of the area prior to the submergence during the marine transgression. This transgression produced an extensive tidal flat near the mouth of the former LLV watershed by 7,477 cal yr BP. Subsequent decoupling of the Las Vueltas valley from the sea occurred through the growth of a baymouth barrier and a beach-ridge plain to the east. This decoupling turned the lagoon into a pan environment in which subsequent lake-level fluctuations were controlled by climate. A lunette dune developed at the pans in the former lagoon, providing a narrow corridor where humans trapped, killed and processed guanacos as early as 3,402 cal yr BP. Changes in aeolian sedimentation hint at increased aridity during the past 500 years.


Boreas ◽  
2018 ◽  
Vol 48 (2) ◽  
pp. 516-533 ◽  
Author(s):  
Grigory Fedorov ◽  
Andrei A. Andreev ◽  
Elena Raschke ◽  
Volker Wennrich ◽  
Georg Schwamborn ◽  
...  

Author(s):  
Brigitta Schütt ◽  
Jonas Berking ◽  
Manfred Frechen ◽  
Chaolu Yi

1998 ◽  
Vol 50 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Margarita Caballero ◽  
Beatriz Ortega Guerrero

Diatoms, magnetic susceptibility, organic content, and14C ages of sediments from a 26-m core suggest that Lake Chalco, in the southern part of the basin of Mexico, went through a series of major fluctuations during the late Pleistocene and the Holocene. Before ca. 39,00014C yr B.P. the lake was very deep (about 8–10 m), alkaline, and saline. It then became shallow (<2 m) for most of the time between ca. 39,000 and 22,500 yr B.P. Chalco deepened to about 4–5 m about the time of a major eruption of nearby Popocatepetl volcano ca. 22,000 yr B.P. The lake remained relatively deep and fresh until ca. 18,500 yr B.P., when lower levels and alternating acidic to freshwater conditions were established. After 14,500 yr B.P. lake level rose slightly, but by ca. 10,000 yr B.P. Chalco became very shallow (<2 m), remaining as a low, alkaline saline marsh until ca. 6000 yr B.P. This period corresponds with the Playa cultural phase, during which the earliest human settlements in the basin were established. After ca. 6000 yr B.P. Chalco became a fresh to slightly alkaline shallow lake a few meters deep.


Sign in / Sign up

Export Citation Format

Share Document