Peatland development at the arctic tree line (Québec, Canada) influenced by flooding and permafrost

2007 ◽  
Vol 67 (3) ◽  
pp. 426-437 ◽  
Author(s):  
Najat Bhiry ◽  
Serge Payette ◽  
Élisabeth C. Robert

AbstractIn this study, we documented the Holocene history of a peat plateau at the arctic tree line in northern Québec using stratigraphic and macrofossil analyses to highlight the effects of geomorphic setting in peatland development. Paludification of the site began about 6800 cal yr BP. From 6390 to 4120 cal yr BP, the peatland experienced a series of flooding events. The location of the peatland in a depression bounded by two small lakes likely explains its sensitivity to runoff. The proximity of a large hill bordering the peatland to the south possibly favored the inflow of mineral-laden water. The onset of permafrost aggradation in several parts of the peatland occurred after 3670 cal yr BP. Uplifting of the peatland surface caused by permafrost stopped the flooding. According to radiocarbon dating of the uppermost peat layers, permafrost distribution progressed from the east to the west of the peatland, indicating differential timing for the initiation of permafrost throughout the peatland. Most of the peatland was affected by permafrost growth during the Little Ice Age.Picea marianamacroremains at 6450 cal yr BP indicate that the species was present during the early stages of peatland development, which occurred soon after the sea regression.

2017 ◽  
Vol 54 (11) ◽  
pp. 1153-1164 ◽  
Author(s):  
B.H. Luckman ◽  
M.H. Masiokas ◽  
K. Nicolussi

As glaciers in the Canadian Rockies recede, glacier forefields continue to yield subfossil wood from sites overridden by these glaciers during the Holocene. Robson Glacier in British Columbia formerly extended below tree line, and recession over the last century has progressively revealed a number of buried forest sites that are providing one of the more complete records of glacier history in the Canadian Rockies during the latter half of the Holocene. The glacier was advancing ca. 5.5 km upvalley of the Little Ice Age terminus ca. 5.26 cal ka BP, at sites ca. 2 km upvalley ca. 4.02 cal ka BP and ca. 3.55 cal ka BP, and 0.5–1 km upvalley between 1140 and 1350 A.D. There is also limited evidence based on detrital wood of an additional period of glacier advance ca. 3.24 cal ka BP. This record is more similar to glacier histories further west in British Columbia than elsewhere in the Rockies and provides the first evidence for a post-Hypsithermal glacier advance at ca. 5.26 cal ka BP in the Rockies. The utilization of the wiggle-matching approach using multiple 14C dates from sample locations determined by dendrochronological analyses enabled the recognition of 14C outliers and an increase in the precision and accuracy of the dating of glacier advances.


1977 ◽  
Vol 7 (1) ◽  
pp. 63-111 ◽  
Author(s):  
George H. Denton ◽  
Wibjörn Karlén

Complex glacier and tree-line fluctuations in the White River valley on the northern flank of the St. Elias and Wrangell Mountains in southern Alaska and Yukon Territory are recognized by detailed moraine maps and drift stratigraphy, and are dated by dendrochronology, lichenometry,14C ages, and stratigraphic relations of drift to the eastern (123014C yr BP) and northern (198014C yr BP) lobes of the White River Ash. The results show two major intervals of expansion, one concurrent with the well-known and widespread Little Ice Age and the other dated between 2900 and 210014C yr BP, with a culmination about 2600 and 280014C yr BP. Here, the ages of Little Ice Age moraines suggest fluctuating glacier expansion between ad 1500 and the early 20th century. Much of the 20th century has experienced glacier recession, but probably it would be premature to declare the Little Ice Age over. The complex moraine systems of the older expansion interval lie immediately downvalley from Little Ice Age moraines, suggesting that the two expansion intervals represent similar events in the Holocene, and hence that the Little Ice Age is not unique. Another very short-lived advance occurred about 1230 to 105014C yr BP. Spruce immigrated into the valley to a minimum altitude of 3500 ft (1067 m), about 600 ft (183 m) below the current spruce tree line of 4100 ft (1250 m), at least by 802014C yr BP. Subsequent intervals of high tree line were in accord with glacier recession; in fact, several spruce-wood deposits above current tree line occur bedded between Holocene tills. High deposits of fossil wood range up to 76 m above present tree line and are dated at about 5250, 3600 to 3000, and 2100 to 123014C yr BP. St. Elias glacial and tree-line fluctuations, which probably are controlled predominantly by summer temperature and by length of the growing and ablation seasons, correlate closely with a detailed Holocene tree-ring curve from California, suggesting a degree of synchronism of Holocene summer-temperature changes between the two areas. This synchronism is strengthened by comparison with the glacier record from British Columbia and Mt. Rainier. Likewise, broad synchronism of Holocene events exists across the Arctic between the St. Elias Mountains and Swedish Lappland. Finally, two sequences from the Southern Hemisphere show similar records, in so far as dating allows. Hence, we believe that a preliminary case can be made for broad synchronism of Holocene climatic fluctuations in several regions, although further data are needed and several areas, particularly Colorado and Baffin Island, show major differences in the regional pattern.


2013 ◽  
Vol 22 (2) ◽  
pp. 207 ◽  
Author(s):  
Vyacheslav I. Kharuk ◽  
Mariya L. Dvinskaya ◽  
K. Jon Ranson

A fire history of northern larch forests was studied. These larch forests are found near the northern limit of their range at ~71°N, where fires are predominantly caused by lightning strikes rather than human activity. Fire-return intervals (FRIs) were calculated based on fire scars and dates of tree natality. Tree natality was used as an approximation of the date of the last fire. The average FRI was found to be 295±57 years, which is the longest reported for larch-dominated stands. Prior studies reported 80–90-year FRIs at 64°N and ~200 years near the latitude of the Arctic Circle. Comparing data from fires that occurred in 1700–1849 (end of the Little Ice Age, LIA) and 1850–1999 (post-LIA warming) indicates approximately twice as many fires occurred during the latter period. This agrees with the hypothesis that observed climatic warming will result in an increase in fire frequency. Our results also indicate that fires that did not leave visible fire scars on the tree stem may be identified based on the date of growth release revealed from dendrochronology.


2004 ◽  
Vol 41 (10) ◽  
pp. 1141-1158 ◽  
Author(s):  
Seija Kultti ◽  
Pirita Oksanen ◽  
Minna Väliranta

Pollen, stomata, and macrofossils in a lake core with a basal date of 9700 14C BP were used to reconstruct past changes in climate and vegetation in the arctic tree line area, northeast European Russia. A palsa peat profile was investigated to establish a chronology of mire initiation and permafrost development during the Holocene. Macrofossils show that tree birch was present in the study area at the beginning of the Holocene and stands of spruce became established shortly thereafter. However, pollen evidence suggests that almost 400 years passed before the area was occupied by a mixed spruce–birch forest, which lasted until ca. 5000 BP. Subsequently, the area reverted to forest–tundra. Paludification began ca. 9000 BP continuing at least until 5700 BP. The conditions were permafrost-free at least until 4500 BP. The latest permafrost aggradation phase is dated to the Little Ice Age. We interpret summer temperatures to have been ca. 3–4 °C higher between ca. 8900 and 5500 BP than at present, and the lowest temperature regime of the Holocene to have occurred between 2700 and 2100 BP.


The Holocene ◽  
2010 ◽  
Vol 20 (6) ◽  
pp. 849-861 ◽  
Author(s):  
Catalina González ◽  
Ligia Estela Urrego ◽  
José Ignacio Martínez ◽  
Jaime Polanía ◽  
Yusuke Yokoyama

2017 ◽  
Vol 21 (4) ◽  
pp. 190-196
Author(s):  
Jan Czempiński ◽  
Maciej Dąbski

AbstractThe aim of this article is to show the results of the lichenometrical and Schmidt hammer measurements performed in 2015 during the AMADEE-15 Mars Mission Simulation in the Ötztal Alps in order to test the capabilities of analogue astronauts and collect information on the geomorphic history of the study area since the Little Ice Age (LIA). The results obtained differ significantly from our expectations, which we attribute to differences in the field experience of participants and the astronauts’ technical limitations in terms of mobility. However, the experiments proved that these methods are within the range of the astronauts’ capabilities. Environmental factors, such as i) varied petrography, ii) varied number of thalli in test polygons, and iii) differences in topoclimatic conditions between the LIA moraine and the glacier front, further inhibited simple interpretation. The LIA maximum of the Kaunertal glacier occurred in AD 1850, and relative stabilization of the frontal part of the rock glacier occurred in AD 1711.


2016 ◽  
Vol 10 (3) ◽  
pp. 1317-1329 ◽  
Author(s):  
Jakub Małecki

Abstract. Svalbard is a heavily glacier-covered archipelago in the Arctic. Dickson Land (DL), in the central part of the largest island, Spitsbergen, is relatively arid and, as a result, glaciers there are relatively small and restricted mostly to valleys and cirques. This study presents a comprehensive analysis of glacier changes in DL based on inventories compiled from topographic maps and digital elevation models for the Little Ice Age (LIA) maximum, the 1960s, 1990, and 2009/2011. Total glacier area has decreased by  ∼ 38 % since the LIA maximum, and front retreat increased over the study period. Recently, most of the local glaciers have been consistently thinning in all elevation bands, in contrast to larger Svalbard ice masses which remain closer to balance. The mean 1990–2009/2011 geodetic mass balance of glaciers in DL is among the most negative from the Svalbard regional means known from the literature.


2013 ◽  
Vol 26 (19) ◽  
pp. 7586-7602 ◽  
Author(s):  
Flavio Lehner ◽  
Andreas Born ◽  
Christoph C. Raible ◽  
Thomas F. Stocker

Abstract The inception of the Little Ice Age (~1400–1700 AD) is believed to have been driven by an interplay of external forcing and climate system internal variability. While the hemispheric signal seems to have been dominated by solar irradiance and volcanic eruptions, the understanding of mechanisms shaping the climate on a continental scale is less robust. In an ensemble of transient model simulations and a new type of sensitivity experiments with artificial sea ice growth, the authors identify a sea ice–ocean–atmosphere feedback mechanism that amplifies the Little Ice Age cooling in the North Atlantic–European region and produces the temperature pattern suggested by paleoclimatic reconstructions. Initiated by increasing negative forcing, the Arctic sea ice substantially expands at the beginning of the Little Ice Age. The excess of sea ice is exported to the subpolar North Atlantic, where it melts, thereby weakening convection of the ocean. Consequently, northward ocean heat transport is reduced, reinforcing the expansion of the sea ice and the cooling of the Northern Hemisphere. In the Nordic Seas, sea surface height anomalies cause the oceanic recirculation to strengthen at the expense of the warm Barents Sea inflow, thereby further reinforcing sea ice growth. The absent ocean–atmosphere heat flux in the Barents Sea results in an amplified cooling over Northern Europe. The positive nature of this feedback mechanism enables sea ice to remain in an expanded state for decades up to a century, favoring sustained cold periods over Europe such as the Little Ice Age. Support for the feedback mechanism comes from recent proxy reconstructions around the Nordic Seas.


2018 ◽  
Vol 12 (7) ◽  
pp. 2249-2266 ◽  
Author(s):  
Nadine Steiger ◽  
Kerim H. Nisancioglu ◽  
Henning Åkesson ◽  
Basile de Fleurian ◽  
Faezeh M. Nick

Abstract. Rapid retreat of Greenland's marine-terminating glaciers coincides with regional warming trends, which have broadly been used to explain these rapid changes. However, outlet glaciers within similar climate regimes experience widely contrasting retreat patterns, suggesting that the local fjord geometry could be an important additional factor. To assess the relative role of climate and fjord geometry, we use the retreat history of Jakobshavn Isbræ, West Greenland, since the Little Ice Age (LIA) maximum in 1850 as a baseline for the parameterization of a depth- and width-integrated ice flow model. The impact of fjord geometry is isolated by using a linearly increasing climate forcing since the LIA and testing a range of simplified geometries. We find that the total length of retreat is determined by external factors – such as hydrofracturing, submarine melt and buttressing by sea ice – whereas the retreat pattern is governed by the fjord geometry. Narrow and shallow areas provide pinning points and cause delayed but rapid retreat without additional climate warming, after decades of grounding line stability. We suggest that these geometric pinning points may be used to locate potential sites for moraine formation and to predict the long-term response of the glacier. As a consequence, to assess the impact of climate on the retreat history of a glacier, each system has to be analyzed with knowledge of its historic retreat and the local fjord geometry.


Sign in / Sign up

Export Citation Format

Share Document