scholarly journals Lichenometry and Schmidt hammer tests in the Kaunertal glacier foreland (Ötztal Alps) during the AMADEE-15 Mars Mission Simulation

2017 ◽  
Vol 21 (4) ◽  
pp. 190-196
Author(s):  
Jan Czempiński ◽  
Maciej Dąbski

AbstractThe aim of this article is to show the results of the lichenometrical and Schmidt hammer measurements performed in 2015 during the AMADEE-15 Mars Mission Simulation in the Ötztal Alps in order to test the capabilities of analogue astronauts and collect information on the geomorphic history of the study area since the Little Ice Age (LIA). The results obtained differ significantly from our expectations, which we attribute to differences in the field experience of participants and the astronauts’ technical limitations in terms of mobility. However, the experiments proved that these methods are within the range of the astronauts’ capabilities. Environmental factors, such as i) varied petrography, ii) varied number of thalli in test polygons, and iii) differences in topoclimatic conditions between the LIA moraine and the glacier front, further inhibited simple interpretation. The LIA maximum of the Kaunertal glacier occurred in AD 1850, and relative stabilization of the frontal part of the rock glacier occurred in AD 1711.

The Holocene ◽  
2010 ◽  
Vol 20 (6) ◽  
pp. 849-861 ◽  
Author(s):  
Catalina González ◽  
Ligia Estela Urrego ◽  
José Ignacio Martínez ◽  
Jaime Polanía ◽  
Yusuke Yokoyama

2017 ◽  
Vol 54 (11) ◽  
pp. 1153-1164 ◽  
Author(s):  
B.H. Luckman ◽  
M.H. Masiokas ◽  
K. Nicolussi

As glaciers in the Canadian Rockies recede, glacier forefields continue to yield subfossil wood from sites overridden by these glaciers during the Holocene. Robson Glacier in British Columbia formerly extended below tree line, and recession over the last century has progressively revealed a number of buried forest sites that are providing one of the more complete records of glacier history in the Canadian Rockies during the latter half of the Holocene. The glacier was advancing ca. 5.5 km upvalley of the Little Ice Age terminus ca. 5.26 cal ka BP, at sites ca. 2 km upvalley ca. 4.02 cal ka BP and ca. 3.55 cal ka BP, and 0.5–1 km upvalley between 1140 and 1350 A.D. There is also limited evidence based on detrital wood of an additional period of glacier advance ca. 3.24 cal ka BP. This record is more similar to glacier histories further west in British Columbia than elsewhere in the Rockies and provides the first evidence for a post-Hypsithermal glacier advance at ca. 5.26 cal ka BP in the Rockies. The utilization of the wiggle-matching approach using multiple 14C dates from sample locations determined by dendrochronological analyses enabled the recognition of 14C outliers and an increase in the precision and accuracy of the dating of glacier advances.


2018 ◽  
Vol 12 (7) ◽  
pp. 2249-2266 ◽  
Author(s):  
Nadine Steiger ◽  
Kerim H. Nisancioglu ◽  
Henning Åkesson ◽  
Basile de Fleurian ◽  
Faezeh M. Nick

Abstract. Rapid retreat of Greenland's marine-terminating glaciers coincides with regional warming trends, which have broadly been used to explain these rapid changes. However, outlet glaciers within similar climate regimes experience widely contrasting retreat patterns, suggesting that the local fjord geometry could be an important additional factor. To assess the relative role of climate and fjord geometry, we use the retreat history of Jakobshavn Isbræ, West Greenland, since the Little Ice Age (LIA) maximum in 1850 as a baseline for the parameterization of a depth- and width-integrated ice flow model. The impact of fjord geometry is isolated by using a linearly increasing climate forcing since the LIA and testing a range of simplified geometries. We find that the total length of retreat is determined by external factors – such as hydrofracturing, submarine melt and buttressing by sea ice – whereas the retreat pattern is governed by the fjord geometry. Narrow and shallow areas provide pinning points and cause delayed but rapid retreat without additional climate warming, after decades of grounding line stability. We suggest that these geometric pinning points may be used to locate potential sites for moraine formation and to predict the long-term response of the glacier. As a consequence, to assess the impact of climate on the retreat history of a glacier, each system has to be analyzed with knowledge of its historic retreat and the local fjord geometry.


2015 ◽  
Vol 65 (3) ◽  
pp. 389-401 ◽  
Author(s):  
Maciej Dąbski

AbstractThis article presents the results of weathering micro-roughness measurements performed with the use of a Handy-surf E-35B electronic profilometer, a new tool in geomorphological studies. Measurements were performed on glacially abraded basaltic surfaces within the Little Ice Age (LIA) glacial forelands of Hoffelsjökull, Fláajökull, Skálafellsjökull and Virkisjökull in Iceland. Results show a statistical increase in micro-roughness in a direction from the glacial termini to LIA moraines. However, a major change in the micro-roughness of basaltic surfaces only occurs during the first 80 to 100 years since the onset of subaerial weathering. Increase in rock surface micro-roughness is accompanied by an increase in weathering rind thickness and a decrease in Schmidt hammer R-values. Micro-roughness measurements with the use of the Handysurf E-35B can provide insights into initial rates of rock surface micro-relief development. The use of this instrument as a relative dating technique is limited to fine-grained rocks and decadal time-scales of weathering because of the limited range of measureable micro-relief amplitude.


2003 ◽  
Vol 40 (10) ◽  
pp. 1413-1436 ◽  
Author(s):  
S J Larocque ◽  
D J Smith

The establishment of fourteen Little Ice Age (LIA) glacier chronologies in the Mt. Waddington area led to the development of an extended history of glacial activity in this portion of the southern British Columbia Coast Mountains, Canada. The glaciers were located within four different mountain ranges, and were of varying size and aspect. Dendrochronological and lichenometric techniques were used to provide relative age estimates of moraines formed as glacier termini retreated from advanced positions. Evidence for pre-LIA glacial events is best preserved at Tiedemann Glacier, where the oldest glacial advances date to A.D. 620 and 925–933. Soil-covered and well-vegetated moraines built at Cathedral, Pagoda, and Siva glaciers date to between A.D. 1203 and 1226. Following this event, moraines constructed at Ragnarok, Siva, and Cathedral glaciers in the mid-14th century suggest glaciers in the region underwent a period of downwasting and retreat before readvancing. The majority of moraines recorded in the Mt. Waddington area describe late-LIA glacial events shown to have constructed moraines that date to A.D. 1443–1458, 1506–1524, 1562–1575, 1597–1621, 1657–1660, 1767–1784, 1821–1837, 1871–1900, 1915–1928, and 1942–1946. Over the last 500 years, these moraine-building episodes were shown to occur on average every 65 years and suggest there has been prolonged synchronicity in the glaciological response to persistent climate-forcing mechanisms. Nevertheless, our analysis suggests that local factors, such as aspect and size, play an important role in individual glacial response. Notably, ice termini of medium-size glaciers facing eastwards showed a quicker response to climatically induced mass balance changes.


Author(s):  
Matt McGlone ◽  
Janet Wilmshurst ◽  
Colin Meurk

ABSTRACTCampbell Island is a small, uninhabited peat-covered island lying in the cool southern ocean 600 km south of the New Zealand mainland. Dracophyllum scrub is the main cover from sea level to 200 m, above which tussock grassland, macrophyllous forbs and tundra dominate. Seven peat profiles from sea level to the tundra zone provide an elevational transect for pollen and charcoal records spanning the last 500 years. Scrub density was relatively low between 200 and 400 cal yrs BP, possibly due to Little Ice Age cooling, but had recovered by the time Europeans discovered the island in AD 1810. Burning and grazing during a brief farming episode (AD 1895–1931) severely reduced scrub and palatable grasses and forbs. Vegetation recovery is now well advanced following cessation of farming and the later elimination of all feral grazing animals, cats and rats. Climates were cool in the southwest Pacific during the farming period, and since AD 1970 the island has warmed by c. 0·5°C. However, there has been no upwards movement of the scrubline despite vigorous regeneration of scrub at lower altitudes. The island's cloudy, highly oceanic climate appears to offset increasing summer warmth, and scrubline is likely to rise only if clearer and less windy, as well as warmer, summers eventuate.


Author(s):  
Joshua Landis ◽  
Grant Meyer

An understanding of the ecological health of stream systems and riparian areas in Yellowstone National Park (YNP) requires knowledge of their response to climatic and hydrological influences; intrinsic factors such as relief and geological materials are important influences as well (e.g., O'Hara and Meyer 1995). Recent studies of southwestern (Ely et al. 1993) and midwestern U.S. rivers (Knox 1993) have shown that relatively minor climatic changes in the late Holocene are associated with large fluctuations in flood magnitude and frequency. In small, steep drainage basins of northeastern YNP (Figure 1), Meyer et al. (1992, 1995) associated increased fire-related debris-flow activity with decadal to millennial-scale cycles of drought over the Holocene. Observations of modern events indicate that debris-flow and flash floods are also produced in the absence of fire in this rugged mountainous region, primarily by intense summer thunderstorm precipitation. Although a correlation between drought severity and fire magnitude in Yellowstone is clear (Balling et al. 1992a, 1992b), the relationship hypothesized by Meyer et al. (1992,1995) between warm, drought-prone climatic episodes and debris-flow activity in this region requires further investigation. Therefore, we use relatively high-resolution lichenometric and tree­ring dating methods to construct a 250-year history of major hydrologic events in small, steep tributary basins of Soda Butte Creek in northeastern Yellowstone. This period spans the transition from the generally cooler global climate of the Little Ice Age to the present (e.g., Grove 1988). Although the Little Ice Age was not uniformly cold in either a spatial or temporal sense (Jones and Bradley 1995), and YNP climate is not well known in the earlier part of this interval, trends toward increasing summer temperatures and decreasing winter precipitation in YNP over the last ~100 yr are consistent with this transition (Balling et al. 1992a).


Sign in / Sign up

Export Citation Format

Share Document