scholarly journals A chronology of alluvial fan response to Late Quaternary sea level and climate change, Crete

2016 ◽  
Vol 86 (2) ◽  
pp. 170-183 ◽  
Author(s):  
Richard J.J. Pope ◽  
Ian Candy ◽  
Emmanuel Skourtsos

AbstractTo better understand how fluvial systems respond to late Quaternary climatic forcing OSL and U-series dating was applied to stratigraphically significant sedimentary units within a small (<6.5 km2) alluvial fan system (the Sphakia fan) in southwest Crete. The resultant chronology (comprising 32 OSL and U-series ages) makes Sphakia fan one of the best dated systems in the Mediterranean and suggests that Cretan fans responded to climate in two ways. First, during the transitions between Marine Isotope Stage (MIS) 5a/4 and MIS 2/1 Sphakia fan was characterised by significant entrenchment and distal shift in the zone of deposition. It is proposed that the phases of entrenchment were driven by sea level induced base level fall during MIS 5a/4 and landscape stabilisation during the onset of the current interglacial (MIS 2/1). Second, with the exception of these two entrenchment episodes fan alluviation occurred across the entire last interglacial/glacial cycle in all climatic settings i.e. interglacials, interstadials and stadials. It is likely that the topographic setting of the catchment supplying sediment to Sphakia fan maintained high sediment transfer rates during most climatic settings enabling fan aggradation to occur except during major climatic driven transitions i.e. major sea level fall and postglacial vegetation development.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 427
Author(s):  
Veronica Rossi ◽  
Alessandro Amorosi ◽  
Marco Marchesini ◽  
Silvia Marvelli ◽  
Andrea Cocchianella ◽  
...  

The Gulf of La Spezia (GLS) in Northwest Italy is a rocky embayment with low fluvial influence facing the Mediterranean Sea. Past landscape dynamics were investigated through a multi-proxy, facies-based analysis down to a core depth of 30 m. The integration of quantitative ostracod, foraminifera, and pollen analyses, supported by radiocarbon ages, proved to be a powerful tool to unravel the late Quaternary palaeoenvironmental evolution and its forcing factors. The complex interplay between relative sea-level (RSL), climatic changes, and geomorphological features of the embayment drove four main evolution phases. A barrier–lagoon system developed in response to the rising RSL of the Late Pleistocene (likely the Last Interglacial). The establishment of glacial conditions then promoted the development of an alluvial environment, with generalised erosion of the underlying succession and subsequent accumulation of fluvial strata. The Holocene transgression (dated ca. 9000 cal year BP) caused GLS inundation and the formation of a low-confined lagoon basin, which rapidly turned into a coastal bay from ca. 8000 cal year BP onwards. This latter environmental change occurred in response to the last Holocene stage of global sea-level acceleration, which submerged a morphological relief currently forming a drowned barrier-island complex in the embayment.


2019 ◽  
Vol 220 (1) ◽  
pp. 384-392
Author(s):  
T Pico

SUMMARY Locally, the elevation of last interglacial (LIG; ∼122 ka) sea level markers is modulated by processes of vertical displacement, such as tectonic uplift or glacial isostatic adjustment, and these processes must be accounted for in deriving estimates of global ice volumes from geological sea level records. The impact of sediment loading on LIG sea level markers is generally not accounted for in these corrections, as it is assumed that the impact is negligible except in extremely high depositional settings, such as the world's largest river deltas. Here we perform a generalized test to assess the extent to which sediment loading may impact global variability in the present-day elevation of LIG sea level markers. We numerically simulate river sediment deposition using a diffusive model that incorporates a migrating shoreline to construct a global history of sedimentation over the last glacial cycle. We then calculate sea level changes due to this sediment loading using a gravitationally self-consistent model of glacial isostatic adjustment, and compare these predictions to a global compilation of LIG sea level data. We perform a statistical analysis, which accounts for spatial autocorrelation, across a global compilation of 1287 LIG sea level markers. Though limited by uncertainties in the LIG sea level database and the precise history of river deposition, this analysis suggests there is not a statistically significant global signal of sediment loading in LIG sea level markers. Nevertheless, at sites where LIG sea level markers have been measured, local sea level predicted using our simulated sediment loading history is perturbed up to 16 m. More generally, these predictions establish the relative sensitivity of different regions to sediment loading. Finally, we consider the implications of our results for estimates of tectonic uplift rates derived from LIG marine terraces; we predict that sediment loading causes 5–10 m of subsidence over the last glacial cycle at specific locations along active margin regions such as California and Barbados, where deriving long-term tectonic uplift rates from LIG shorelines is a common practice.


2020 ◽  
Author(s):  
Chris Widga ◽  
Greg Hodgins ◽  
Kayla Kolis ◽  
Stacey Lengyel ◽  
Jeff Saunders ◽  
...  

ABSTRACTStable isotopes of mammoths and mastodons have the potential to illuminate ecological changes in late Pleistocene landscapes and megafaunal populations as these species approached extinction. The ecological factors at play in this extinction remain unresolved, but isotopes of bone collagen (δ13C, δ15N) and tooth enamel (δ13C, δ18O, 87Sr/86Sr) from the Midwest, USA are leveraged to examine ecological and behavioral changes that occurred during the last interglacial-glacial cycle. Both species had significant C3 contributions to their diets and experienced increasing levels of niche overlap as they approached extinction. A subset of mastodons after the last glacial maximum (LGM) exhibit low δ15N values that may represent expansion into a novel ecological niche, perhaps densely occupied by other herbivores. Stable isotopes from serial and micro-sampled enamel show increasing seasonality and decreasing temperatures as mammoths transitioned from Marine Isotope Stage (MIS) 5e to glacial conditions (MIS 4, MIS 3, MIS 2). Isotopic variability in enamel suggests mobility patterns and life histories have potentially large impacts on the interpretation of their stable isotope ecology. This study further refines the ecology of midwestern mammoths and mastodons demonstrating increasing seasonality and niche overlap as they responded to landscape changes in the final millennia before extinction.


2020 ◽  
pp. 1-16
Author(s):  
Chris Widga ◽  
Greg Hodgins ◽  
Kayla Kolis ◽  
Stacey Lengyel ◽  
Jeff Saunders ◽  
...  

Abstract Stable isotopes of mammoths and mastodons have the potential to illuminate ecological changes in late Pleistocene landscapes and megafaunal populations as these species approached extinction. The ecological factors at play in this extinction remain unresolved, but isotopes of bone collagen (δ13C, δ15N) and tooth enamel (δ13C, δ18O, 87Sr/86Sr) from midwestern North America are leveraged to examine ecological and behavioral changes that occurred during the last interglacial-glacial cycle. Both species had significant C3 contributions to their diets and experienced increasing levels of niche overlap as they approached extinction. A subset of mastodons after the last glacial maximum exhibit low δ15N values that may represent expansion into a novel ecological niche, perhaps densely occupied by other herbivores. Stable isotopes from serial and microsampled enamel show increasing seasonality and decreasing temperatures as mammoths transitioned from Marine Isotope Stage (MIS) 5e to glacial conditions (MIS 4, MIS 3, MIS 2). Isotopic variability in enamel suggests mobility patterns and life histories have potentially large impacts on the interpretation of their stable isotope ecology. This study further refines the ecology of midwestern mammoths and mastodons demonstrating increasing seasonality and niche overlap as they responded to landscape changes in the final millennia before extinction.


2012 ◽  
Vol 78 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Daniel R. Muhs ◽  
John M. Pandolfi ◽  
Kathleen R. Simmons ◽  
R. Randall Schumann

AbstractCuraçao has reef terraces with the potential to provide sea-level histories of interglacial periods. Ages of the Hato (upper) unit of the “Lower Terrace” indicate that this reef dates to the last interglacial period, Marine Isotope Stage (MIS) 5.5. On Curaçao, this high sea stand lasted at least 8000 yr (~ 126 to ~ 118 ka). Elevations and age of this reef show that late Quaternary uplift rates on Curaçao are low, 0.026–0.054 m/ka, consistent with its tectonic setting. Ages of ~ 200 ka for corals from the older Cortalein unit of the Lower Terrace correlate this reef to MIS 7, with paleo-sea level estimates ranging from − 3.3 m to + 2.3 m. The estimates are in agreement with those for MIS 7 made from other localities and indicate that the penultimate interglacial period was a time of significant warmth, on a par with the present interglacial period. The ~ 400 ka (MIS 11) Middle Terrace I on Curaçao, dated by others, may have formed from a paleo-sea level of + 8.3 to + 10.0 m, or (less likely) + 17 m to + 20 m. The lower estimates are conservative compared to previous studies, but still require major ice sheet loss from Greenland and Antarctica.


2014 ◽  
Vol 82 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Thomas Stevens ◽  
Matthew J. Jestico ◽  
Graham Evans ◽  
Anthony Kirkham

AbstractAccurate sea-level reconstruction is critical in understanding the drivers of coastal evolution. Inliers of shallow marine limestone and aeolianite are exposed as zeugen (carbonate-capped erosional remnants) on the southern coast of the Arabian/Persian Gulf. These have generally been accepted as evidence of a eustatically driven, last-interglacial relative sea-level highstand preceded by a penultimate glacial-age lowstand. Instead, recent optically stimulated luminescence (OSL) dating suggests a last glacial age for these deposits, requiring >100 m of uplift since the last glacial maximum in order to keep pace with eustatic sea-level rise and implying the need for a wholesale revision of tectonic, stratigraphic and sea-level histories of the Gulf. These two hypotheses have radically different implications for regional neotectonics and land–sea distribution histories. Here we test these hypotheses using OSL dating of the zeugen formations. These new ages are remarkably consistent with earlier interpretations of the formations being last interglacial or older in age, showing that tectonic movements are negligible and eustatic sea-level variations are responsible for local sea-level changes in the Gulf. The cause of the large age differences between recent studies is unclear, although it appears related to large differences in the measured accumulated dose in different OSL samples.


2016 ◽  
Author(s):  
Jose A. Ortega-Becerril ◽  
Guillermina Garzón ◽  
Marta Béjar-Pizarro ◽  
Jose Jesús Martínez-Díaz

Abstract. Transition from endorheic alluvial fan environments to well-channelized fluvial systems in natural conditions may occur in response to base-level fluctuations. However, human-induced changes in semi-arid regions can also be responsible for similar unforeseen modifications. Our results confirm that in-channel gravel mining and aquifer overexploitation over the last 50 years in the case study area have changed the natural stability of the Nogalte stream and, as a result, its geomorphic parameters including channel depth and longitudinal profile have begun to adapt to the new situation. Using interferometric synthetic aperture radar (InSAR) data we obtain maximum values for ground subsidence in the Upper Guadalentín basin of ~ 10 cm yr−1 for the period 2003–2010. In this context of a lowered base level, the river is changing its natural flood model to a more energetic one. A comparison of the 1973 flood event, the most dramatic ever recorded in the area, with the 2012 event, where there was a similar discharge but a sediment load deficit, reveals greater changes and a new flooding pattern and extension. In-channel gravel mining may be responsible for significant local changes in channel incision and profile. This, together with the collateral effects of aquifer overexploitation, can favor increased river velocity and stream power, which intensify the consequences of the flooding. The results obtained here clearly demonstrate an existing transition from the former alluvial pattern to a confined fluvial trend, which may become more pronounced in the future due to the time-lag between the drop in aquifer level and ground subsidence, and introduce a new scenario to be taken into consideration in future natural hazard planning in this area.


2017 ◽  
Vol 8 (2) ◽  
pp. 13 ◽  
Author(s):  
Salim Mubarak Al Hatrushi

Raised shore platforms, are rocky surfaces formed by wave action and subaerial weathering during global high sea level stands. The present height of the raised shore platforms is attributed to several factors, mainly to eustatic sea level changes, isostatic changes in the relative level of land and sea, and vertical tectonic activities. The aim of this study is to investigate the detailed morphology of the raised shore platform along the rocky coastline between Daghmar and Dhabab, in the southeastern part of Muscat Governorate. The study also intends to establish a tentative chronology of the raised shore platforms development. The methodology is based on field observation and documentation, along with satellite and aerial photographs analysis. The results have shown that the study area has a sequence of five successive, well developed raised shore platforms and well preserved, except the platform at 10m altitude which is only found in isolated fragments. The formation of the raised shore platforms has been affected by a number of constructive factors including tectonic activity, and destructive factors such as fluvial action and subaerial weathering. No absolute dating has been reported or can be obtained from the study area, due to its erosional nature. However, dating from the shorelines adjacent to the study area, ranging in heights from 3 to 15m above sea level, revealed a narrow range of 26,400 to 29,600 years. This period coincides with the last glaciations when the sea level was at about 75m below the present level, and thus did not match with the altitudes of the platforms. This suggests that the platforms could be belong to the last interglacial high sea level, when the sea level stood at about 6m above the present level. Based on this scenario, the study concludes that the coastline of the study area has not experienced any significant uplift during the Late Quaternary. 


2017 ◽  
Vol 88 (3) ◽  
pp. 409-429 ◽  
Author(s):  
Daniel R. Muhs ◽  
Kathleen R. Simmons

AbstractAlthough uranium series (U-series) ages of growth-position fossil corals are important to Quaternary sea-level history, coral clast reworking from storms can yield ages on a terrace dating to more than one high-sea stand, confounding interpretations of sea-level history. On northern Barbados, U-series ages corals from a thick storm deposit are not always younger with successively higher stratigraphic positions, but all date to the last interglacial period (~127 ka to ~112 ka), Marine Isotope Substage (MIS) 5.5. The storm deposit ages are consistent with the ages of growth-position corals found at the base of the section and at landward localities on this terrace. Thus, in this case, analysis of only a few corals would not have led to an error in interpreting sea-level history. In contrast, a notch cut into older Pleistocene limestone below the MIS 5.5 terrace contains corals that date to both MIS 5.5 (~125 ka) and MIS 5.3 (~108 ka). We infer that the notch formed during MIS 5.3 and the MIS 5.5 corals are reworked. Similar multiple ages of corals on terraces have been reported elsewhere on Barbados. Thus, care must be taken in interpreting U-series ages of corals that are reported without consideration of taphonomy.


Sign in / Sign up

Export Citation Format

Share Document