mis 5.5
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2597
Author(s):  
Giacomo Deiana ◽  
Fabrizio Antonioli ◽  
Lorenzo Moretti ◽  
Paolo Emanuele Orrù ◽  
Giovanni Randazzo ◽  
...  

Areas of the Mediterranean Sea are dynamic habitats in which human activities have been conducted for centuries and which feature micro-tidal environments with about 0.40 m of range. For this reason, human settlements are still concentrated along a narrow coastline strip, where any change in the sea level and coastal dynamics may impact anthropic activities. We analyzed light detection and ranging (LiDAR) and Copernicus Earth observation data. The aim of this research is to provide estimates and detailed maps (in three coastal plain of Sardinia (Italy) and in the Pontina Plain (southern Latium, Italy) of: (i) the past marine transgression occurred during MIS 5.5 highstand 119 kyrss BP; (ii) the coastline regression occurred during the last glacial maximum MIS 2 (21.5 krs cal BP); and (iii) the potential marine submersion for 2100 and 2300. The objective of this multidisciplinary study is to provide maps of sea level rise future scenarios using the IPCC RCP 8.5 2019 projections and glacio-hydro-isostatic movements for the above selected coastal zones (considered tectonically stable), which are the locations of touristic resorts, railways and heritage sites. We estimated a potential loss of land for the above areas of between about 146 km2 (IPCC 2019-RCP8.5 scenario) and 637 km2 along a coastline length of about 268 km.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2127
Author(s):  
Stefano Furlani ◽  
Valeria Vaccher ◽  
Fabrizio Antonioli ◽  
Mauro Agate ◽  
Sara Biolchi ◽  
...  

The Mediterranean Basin is characterized by a significant variability in tectonic behaviour, ranging from subsidence to uplifting. However, those coastal areas considered to be tectonically stable show coastal landforms at elevations consistent with eustatic and isostatic sea level change models. In particular, geomorphological indicators—such as tidal notches or shore platforms—are often used to define the tectonic stability of the Mediterranean coasts. We present the results of swim surveys in nine rocky coastal sectors in the central Mediterranean Sea using the Geoswim approach. The entire route was covered in 22 days for a total distance of 158.5 km. All surveyed sites are considered to have been tectonically stable since the last interglacial (Marine Isotope Stage 5.5 [MIS 5.5]), because related sea level markers fit well with sea level rise models. The analysis of visual observations and punctual measurements highlighted that, with respect to the total length of surveyed coast, the occurrence of tidal notches, shore platforms, and other indicators accounts for 85% of the modern coastline, and only 1% of the MIS 5.5 equivalent. Therefore, only 1% of the surveyed coast showed the presence of fossil markers of paleo sea levels above the datum. This significant difference is mainly attributable to erosion processes that did not allow the preservation of the geomorphic evidence of past sea level stands. In the end, our research method showed that the feasibility of applying such markers to define long-term tectonic behaviour is much higher in areas where pre-modern indicators have not been erased, such as at sites with hard bedrock previously covered by post-MIS 5.5 continental deposits, e.g., Sardinia, the Egadi Islands, Ansedonia, Gaeta, and Circeo. In general, the chances of finding such preserved indicators are very low.


2021 ◽  
Author(s):  
Ilaria Crotti ◽  
Amaelle Landais ◽  
Barbara Stenni ◽  
Massimo Frezzotti ◽  
Aurélien Quiquet ◽  
...  

<p>The growth and decay of marine ice sheets act as important controls on regional and global climate, in particular, the behavior of the ice sheets is a key uncertainty in predicting sea-level rise during and beyond this century. The East Antarctic Ice Sheet (EAIS), which contains deep subglacial basins with reverse-sloping, is considered to be susceptible to ice loss caused by marine ice sheet instability. Sediment core offshore Wilkes Subglacial Basin reveals oscillations in the provenance of detrital sediment that have been interpreted to reflect an erosion of Wilkes Basin during interglacial periods MIS 5, MIS 7, and MIS 9 greater than Holocene period (Wilson et al., 2018). The aim of our study is to investigate past climate and environmental changes in the coastal area of the East Antarctic Ice Sheet during MIS 7.5 and 9.3 with the help of a new high-resolution water isotopes record of the TALDICE ice core.</p><p>Here we present new δ<sup>18</sup>O and δD high resolution (5 cm) records covering the oldest portion of the TALDICE ice core. MIS 7.5 and 9.3 isotopic signal reveals a unique feature, already observed for MIS 5.5, that has not been spotted in other Antarctic ice cores (Masson-Delmotte et al., 2011). Interglacial periods at TALDICE are characterized by a first peak, observed in correspondence to the culmination of the deglaciation event as for all Antarctic cores, followed by a less pronounced isotopic peak (for MIS 5.5 and 9.3) or a plateau (for MIS 7.5) prior to the glacial inception. Several factors might drive this peculiar behavior of the water stable isotopes record, as an increase in temperatures due to a drop in surface elevation or changes in moisture sources.</p><p>The new δ<sup>18</sup>O and δD high-resolution records for the TALDICE ice core reveal a unique pattern that characterizes interglacial periods at Talos Dome. Taking into account the coastal position of the core and its vicinity to the Wilkes Subglacial Basin we intend to investigate the possible decrease in surface elevation, through the application of the GRISLI ice sheet model (Quiquet et al., 2018), and changes in moisture sources, traceable from the d-excess record.</p>


2019 ◽  
Vol 525 ◽  
pp. 54-77 ◽  
Author(s):  
Fabrizio Marra ◽  
Jean-Jacques Bahain ◽  
Brian R. Jicha ◽  
Sebastien Nomade ◽  
Danilo M. Palladino ◽  
...  

2017 ◽  
Vol 88 (3) ◽  
pp. 409-429 ◽  
Author(s):  
Daniel R. Muhs ◽  
Kathleen R. Simmons

AbstractAlthough uranium series (U-series) ages of growth-position fossil corals are important to Quaternary sea-level history, coral clast reworking from storms can yield ages on a terrace dating to more than one high-sea stand, confounding interpretations of sea-level history. On northern Barbados, U-series ages corals from a thick storm deposit are not always younger with successively higher stratigraphic positions, but all date to the last interglacial period (~127 ka to ~112 ka), Marine Isotope Substage (MIS) 5.5. The storm deposit ages are consistent with the ages of growth-position corals found at the base of the section and at landward localities on this terrace. Thus, in this case, analysis of only a few corals would not have led to an error in interpreting sea-level history. In contrast, a notch cut into older Pleistocene limestone below the MIS 5.5 terrace contains corals that date to both MIS 5.5 (~125 ka) and MIS 5.3 (~108 ka). We infer that the notch formed during MIS 5.3 and the MIS 5.5 corals are reworked. Similar multiple ages of corals on terraces have been reported elsewhere on Barbados. Thus, care must be taken in interpreting U-series ages of corals that are reported without consideration of taphonomy.


2012 ◽  
Vol 8 (5) ◽  
pp. 1621-1636 ◽  
Author(s):  
B. Chapligin ◽  
H. Meyer ◽  
G. E. A. Swann ◽  
C. Meyer-Jacob ◽  
H.-W. Hubberten

Abstract. In 2003 sediment core Lz1024 was drilled at Lake El'gygytgyn, far east Russian Arctic, in an area of the Northern Hemisphere which has not been glaciated for the last 3.6 Ma. Biogenic silica was used for analysing the oxygen isotope composition (δ18Odiatom) in the upper 13 m long section dating back about 250 ka with samples dominated by one taxa in the <10 μm fraction (Cyclotella ocellata). Downcore variations in δ18O values show that glacial-interglacial cycles are present throughout the core and δ18Odiatom-values are mainly controlled by δ18Oprecipitation. Changes reflect the Holocene Thermal Maximum, the Last Glacial Maximum (LGM) and the interglacial periods corresponding to MIS 5.5 and MIS 7 with a peak-to-peak amplitude between LGM and MIS 5.5 of Δ18O = 5.3‰. This corresponds to a mean annual air temperature difference of about 9 °C. Our record is the first continuous δ18Odiatom record from an Arctic lake sediment core directly responding to precipitation and dating back more than 250 ka and correlates well with the stacked marine δ18O LR04 (r = 0.58) and δD EPICA Dome-C record (r = 0.69). With δ18O results indicating strong links to both marine and ice-core records, records from Lake El'gygytgyn can be used to further investigate the sensitivity of the Arctic climate to both past and future global climatic changes.


2010 ◽  
Vol 6 (1) ◽  
pp. 19-29 ◽  
Author(s):  
D. Q. Bowen

Abstract. Comparison of the sea-level today with that of 400 000 years ago (MIS 11), when the Earth's orbital characteristics were similar may provide, under conditions of natural variability, indications of future sea-level during the present interglacial. Then, as now, orbital eccentricity was low and precession dampened. Evidence for MIS 11 sea-level occurs on uplifting coastlines where shorelines with geochronological ages have been preserved. The sea-level term and the uplift term may be separated with an "uplift correction" formula. This discovers the original sea-level at which the now uplifted shoreline was fashioned. Estimates are based on average uplift rates of the "last interglacial" sea-level (MIS 5.5) using a range of estimates for sea-level and age at that time at different locations. These, with varying secular tectonic regimes in different ocean basins, provide a band of estimates for the MIS 11 sea-level. They do not support the hypothesis of an MIS 11 sea-level at ~20 m, and instead show that it was closer to its present level.


Sign in / Sign up

Export Citation Format

Share Document