Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation

2000 ◽  
Vol 60 (7) ◽  
pp. 979-988 ◽  
Author(s):  
Kevin St.P McNaught ◽  
Peter Jenner
1999 ◽  
Vol 66 ◽  
pp. 17-25 ◽  
Author(s):  
Guy C. Brown ◽  
Vilmante Borutaite

Nitric oxide (NO) and its derivative, peroxynitrite (ONOO-), inhibit mitochondrial respiration, and this inhibition may contribute to both the physiological and cytotoxic actions of NO. Nanomolar concentrations of NO rapidly and reversibly inhibited cytochrome oxidase in competition with oxygen, as shown with isolated cytochrome oxidase, mitochondria, brain nerve terminals and cells. Cultured astrocytes and macrophages activated (by cytokines and endotoxin) to express the inducible form of NO synthase produced up to 1 μM NO, and inhibited their own respiration and that of co-incubated cells via reversible NO inhibition of cytochrome oxidase. NO-induced inhibition of respiration in brain nerve terminals resulted in rapid glutamate release, which might contribute to the neurotoxicity of NO. NO inhibition of cytochrome oxidase is reversible; however, incubation of cells with NO donors for 4 hours resulted in an inhibition of complex I, which was reversible by light and thiol reagents and may be due to nitrosylation of thiols in complex I. NO also caused the acute inhibition of catalase, stimulation of hydrogen peroxide production by mitochondria, and reaction with hydrogen peroxide on superoxide dismutase to produce peroxynitrite. Peroxynitrite inhibited complexes I, II and V (the ATP synthase), aconitase, creatine kinase, and increases the proton leak in isolated mitochondria. Peroxynitrite also caused opening of the permeability transition pore, resulting in the release of cytochrome c, which might then trigger apoptosis. Hypoxia/ischaemia also resulted in an acute reversible inhibition of cytochrome oxidase. Heart ischaemia caused the release of cytochrome c from mitochondria into the cytosol, and at the same time caspase-3-like-protease activity was activated in the cytoplasm. Addition of cytochrome c to non-ischaemic cytosol also caused activation of this protease activity, suggesting that caspase activation and consequent apoptosis is at least partly a result of this cytochrome c release.


2019 ◽  
Vol 10 (5) ◽  
pp. 2528-2537 ◽  
Author(s):  
Darío E. Iglesias ◽  
Silvina S. Bombicino ◽  
Alberto Boveris ◽  
Laura B. Valdez

The aim was to study thein vitroeffect of nM to low μM concentration of (+)-catechin on the enzymatic activities of mitochondrial complex I and mtNOS, as well as the consequences on the membrane potential and H2O2production rate.


2013 ◽  
Vol 31 (3) ◽  
pp. 278
Author(s):  
Wen-Qi XIE ◽  
Jin-Ping ZHANG ◽  
Jian-Yi TAN ◽  
Xiao-Li XUAN ◽  
Yong-Fei WANG ◽  
...  

2020 ◽  
Vol 16 (9) ◽  
pp. 1319-1327
Author(s):  
Ferdous Khan ◽  
Syed A. Kuddus ◽  
Md. H. Shohag ◽  
Hasan M. Reza ◽  
Murad Hossain

Background: An imbalance between pro-oxidants and antioxidants determines the level of oxidative stress which is implicated in the etiopathogenesis of various neuropsychiatric disorders including depression. Therefore, treatment with antioxidants could potentially improve the balance between pro-oxidants and antioxidants. Objective: The objective of this study was to evaluate the ability of astaxanthin, a potential antioxidant, to reduce reserpine-induced depression in BALB/c mice (Mus musculus). Methods: On the behavioral level, antidepressant property of astaxanthin (50 mg/kg, orally) on reserpine (2 mg/kg, subcutaneously) induced depressed mice was evaluated by Forced Swim Test (FST) and Tail Suspension Test (TST). In the biochemical level, the ability of astaxanthin to mitigate reserpine-induced oxidative stress was evaluated by the measurement of Malondialdehyde (MDA) and nitric oxide (NO) in brain, liver and plasma samples. On the other hand, the efficiency of astaxanthin to replenish glutathione depletion and antioxidant enzyme activity augmentation in the same samples were also investigated. Results: Astaxanthin was able to lower reserpine induced immobility time significantly (p<0.05) in FST and TST. Mice treated with astaxanthin showed significantly (p<0.05) low level of oxidative stress markers such as Malondialdehyde (MDA), Nitric Oxide (NO). Consistently, the level of reduced Glutathione (GSH), and the activity of Superoxide Dismutase (SOD) and catalase were augmented due to the oral administration of astaxanthin. Conclusion: This study suggests that astaxanthin reduces reserpine-induced oxidative stress and therefore might be effective in treating oxidative stress associated depression.


2003 ◽  
Vol 37 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Nils-Erik Huseby ◽  
Nana Asare ◽  
Silje Wetting ◽  
Idun Merete Mikkelsen ◽  
Bente Mortensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document