scholarly journals (+)-Catechin inhibits heart mitochondrial complex I and nitric oxide synthase: functional consequences on membrane potential and hydrogen peroxide production

2019 ◽  
Vol 10 (5) ◽  
pp. 2528-2537 ◽  
Author(s):  
Darío E. Iglesias ◽  
Silvina S. Bombicino ◽  
Alberto Boveris ◽  
Laura B. Valdez

The aim was to study thein vitroeffect of nM to low μM concentration of (+)-catechin on the enzymatic activities of mitochondrial complex I and mtNOS, as well as the consequences on the membrane potential and H2O2production rate.

2005 ◽  
Vol 281 (8) ◽  
pp. 4779-4786 ◽  
Author(s):  
María C. Franco ◽  
Valeria G. Antico Arciuch ◽  
Jorge G. Peralta ◽  
Soledad Galli ◽  
Damián Levisman ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Jimmy Zhang ◽  
Marcin K Karcz ◽  
Sergiy M Nadtochiy ◽  
Paul S Brookes

Background: To date, there are no FDA-approved therapies for the reduction of infarct size in acute myocardial infarction. Previously, we developed a cell-based phenotypic assay of ischemia-reperfusion (IR) injury, which was used to identify novel cytoprotective agents delivered prior to ischemia. Herein, we sought to identify cytoprotective agents in a more clinically relevant model: drug delivery at reperfusion, and to investigate possible underlying mechanisms of protection. Methods: Primary adult mouse cardiomyocytes were subjected to simulated IR injury using a modified Seahorse XF24 apparatus with drug addition at the onset of reperfusion. Cell death was estimated using LDH release. Drugs which protected cardiomyocytes in vitro were tested in a Langendorff model of IR injury, measuring functional recovery and infarct size. In separate experiments, metabolites extracted from perfused hearts were resolved by HPLC. Results: Nornicotine was identified as a cardioprotective agent in the screen. In perfused hearts, 10 nM nornicotine injected at the onset of reperfusion improved functional recovery and decreased in infarct size (13.1% ± 2.4 vs 49.2% ± 2.5 in non-treated hearts, p<0.05, n=16-20). Nornicotine also exhibited profound inhibitory effects on mitochondrial complex I activity. Succinate is known to accumulate in ischemia, and its rapid consumption during early reperfusion exacerbates reperfusion injury via ROS generation from electron backflow through complex I [PMID: 25383517]. In non-treated hearts, we confirmed that high post ischemic levels of succinate rapidly declined during the first 2 min of reperfusion. In contrast, nornicotine slowed post-ischemic succinate consumption, suggesting that electron backflow through complex I is the major pathway driving succinate consumption. Conclusions: Herein, we demonstrated that nornicotine was cardioprotective when delivered at early reperfusion in vitro and ex vivo. The mechanism of cardioprotection may be due to inhibition of rapid succinate consumption during early reperfusion via reverse electron flow back through complex I.


1996 ◽  
Vol 313 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Mauro ESPOSTI DEGLI ◽  
Anna NGO ◽  
Gabrielle L. McMULLEN ◽  
Anna GHELLI ◽  
Francesca SPARLA ◽  
...  

We report the first detailed study on the ubiquinone (coenzyme Q; abbreviated to Q) analogue specificity of mitochondrial complex I, NADH:Q reductase, in intact submitochondrial particles. The enzymic function of complex I has been investigated using a series of analogues of Q as electron acceptor substrates for both electron transport activity and the associated generation of membrane potential. Q analogues with a saturated substituent of one to three carbons at position 6 of the 2,3-dimethoxy-5-methyl-1,4-benzoquinone ring have the fastest rates of electron transport activity, and analogues with a substituent of seven to nine carbon atoms have the highest values of association constant derived from NADH:Q reductase activity. The rate of NADH:Q reductase activity is potently but incompletely inhibited by rotenone, and the residual rotenone-insensitive rate is stimulated by Q analogues in different ways depending on the hydrophobicity of their substituent. Membrane potential measurements have been undertaken to evaluate the energetic efficiency of complex I with various Q analogues. Only hydrophobic analogues such as nonyl-Q or undecyl-Q show an efficiency of membrane potential generation equivalent to that of endogenous Q. The less hydrophobic analogues as well as the isoprenoid analogue Q-2 are more efficient as substrates for the redox activity of complex I than for membrane potential generation. Thus the hydrophilic Q analogues act also as electron sinks and interact incompletely with the physiological Q site in complex I that pumps protons and generates membrane potential.


2013 ◽  
Vol 41 (5) ◽  
pp. 1325-1330 ◽  
Author(s):  
Marion Babot ◽  
Alexander Galkin

The unique feature of mitochondrial complex I is the so-called A/D transition (active–deactive transition). The A-form catalyses rapid oxidation of NADH by ubiquinone (k ~104 min−1) and spontaneously converts into the D-form if the enzyme is idle at physiological temperatures. Such deactivation occurs in vitro in the absence of substrates or in vivo during ischaemia, when the ubiquinone pool is reduced. The D-form can undergo reactivation given both NADH and ubiquinone availability during slow (k ~1–10 min−1) catalytic turnover(s). We examined known conformational differences between the two forms and suggested a mechanism exerting A/D transition of the enzyme. In addition, we discuss the physiological role of maintaining the enzyme in the D-form during the ischaemic period. Accumulation of the D-form of the enzyme would prevent reverse electron transfer from ubiquinol to FMN which could lead to superoxide anion generation. Deactivation would also decrease the initial burst of respiration after oxygen reintroduction. Therefore the A/D transition could be an intrinsic protective mechanism for lessening oxidative damage during the early phase of reoxygenation. Exposure of Cys39 of mitochondrially encoded subunit ND3 makes the D-form susceptible for modification by reactive oxygen species and nitric oxide metabolites which arrests the reactivation of the D-form and inhibits the enzyme. The nature of thiol modification defines deactivation reversibility, the reactivation timescale, the status of mitochondrial bioenergetics and therefore the degree of recovery of the ischaemic tissues after reoxygenation.


Sign in / Sign up

Export Citation Format

Share Document