scholarly journals Presynaptic Calcium Dynamics and Transmitter Release Evoked by Single Action Potentials at Mammalian Central Synapses

1997 ◽  
Vol 72 (2) ◽  
pp. 637-651 ◽  
Author(s):  
Saurabh R. Sinha ◽  
Ling-Gang Wu ◽  
Peter Saggau
2005 ◽  
Vol 94 (6) ◽  
pp. 4430-4440 ◽  
Author(s):  
Sofija Andjelic ◽  
Vincent Torre

Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (Δ F/ F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. Δ F/ F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, Δ F/ F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.


2020 ◽  
Author(s):  
Marisa M. Brockmann ◽  
Estelle Toulme ◽  
Andreas T. Grasskamp ◽  
Thorsten Trimbuch ◽  
Thomas C. Südhof ◽  
...  

SummaryNeuronal synapses transduce information via the consecutive action of three transducers: voltage-gated Ca2+-channels, fusion-competent synaptic vesicles, and postsynaptic receptors. Their physical distance is thought to influence the speed and efficiency of neurotransmission. However, technical limitations have hampered resolving their nanoscale arrangement. Here, we developed a new method for live-labeling proteins for electron microscopy (EM), revealing that release-competent vesicles preferentially align with Ca2+-channels and postsynaptic AMPA receptors within 20-30 nm and thereby forming a transsynaptic tripartite nanocomplex. Using functional EM, we show that single action potentials cause vesicles within the nanocomplex to fuse with a 50% probability. The loss of the presynaptic scaffold disrupts the formation of the tripartite transducers. Strikingly, the forced transsynaptic alignment of the Ca2+-channel subunit α2δ1 and AMPA receptors suffice to restore neurotransmission in a scaffold lacking synapse. Our results demonstrate a synaptic transducer nanocomplex that actively contributes to the organization of central synapses.


1979 ◽  
Vol 78 (1) ◽  
pp. 121-136
Author(s):  
GERALD E. SILVEY ◽  
IAN S. WILSON

The syncarid crustacean Anaspides tasmaniae rapidly flexes its free thoracic and abdominal segments in response to tactile stimulation of its body. This response decrements but recovers in slightly more than one hour. The fast flexion is evoked by single action potentials in the lateral of two large diameter fibres (40 μm) which lie on either side of the cord. The lateral giant fibre is made up of fused axons of 11 neurones, one in each of the last 5 thoracic and 6 abdominal ganglia. The soma of each neurone lies contralateral to the axon. Its neurite crosses that of its counterpart in the commissure and gives out dendrites into the neuropile of each hemiganglion. The lateral giant neurone receives input from the whole body but fires in response only to input from the fourth thoracic segment posteriorly. Both fibres respond with tactile stimulation of only one side. Since neither current nor action potentials spread from one fibre to the other, afferents must synapse with both giant neurones. The close morphological and physiological similarities of the lateral giant neurone in Anaspides to that in the crayfish (Eucarida) suggest that the lateral giant system arose in the ancestor common to syncarids and eucarids, prior to the Carboniferous.


1982 ◽  
Vol 242 (5) ◽  
pp. C366-C372 ◽  
Author(s):  
D. F. Wilson

The presence and physiological significance of acetylcholine (ACh) receptors on motor nerve terminals was examined at the rat diaphragm neuromuscular junction. Intracellular recording techniques were used to monitor end-plate potentials (EPP), miniature end-plate potentials (MEPP), and resting potentials of the muscle fibers. Muscle action potentials were blocked by the cut-muscle technique. Quantal release was determined by the ratio EPP/MEPP, after correcting for nonlinear summation. Blockade of acetylcholinesterase with eserine and neostigmine was tested to determine the influence of residual ACh on transmitter release. Partial blockade of ACh receptors with curare was examined to further clarify the role of these presynaptic receptors. The experiments demonstrate that residual ACh inhibits transmitter release and that blockade of ACh receptors enhances transmitter release. It is concluded that presynaptic ACh receptors exist and that they serve an important physiological function. It is suggested that the presynaptic ACh receptors normally serve to limit transmitter release in a negative feedback pathway.


2011 ◽  
Vol 106 (2) ◽  
pp. 710-721 ◽  
Author(s):  
Sunil A. Desai ◽  
Gregory A. Lnenicka

Postsynaptic intracellular Ca2+ concentration ([Ca2+]i) has been proposed to play an important role in both synaptic plasticity and synaptic homeostasis. In particular, postsynaptic Ca2+ signals can alter synaptic efficacy by influencing transmitter release, receptor sensitivity, and protein synthesis. We examined the postsynaptic Ca2+ transients at the Drosophila larval neuromuscular junction (NMJ) by injecting the muscle fibers with Ca2+ indicators rhod-2 and Oregon Green BAPTA-1 (OGB-1) and then monitoring their increased fluorescence during synaptic activity. We observed discrete postsynaptic Ca2+ transients along the NMJ during single action potentials (APs) and quantal Ca2+ transients produced by spontaneous transmitter release. Most of the evoked Ca2+ transients resulted from the release of one or two quanta of transmitter and occurred largely at synaptic boutons. The magnitude of the Ca2+ signals was correlated with synaptic efficacy; the Is terminals, which produce larger excitatory postsynaptic potentials (EPSPs) and have a greater quantal size than Ib terminals, produced a larger Ca2+ signal per terminal length and larger quantal Ca2+ signals than the Ib terminals. During a train of APs, the postsynaptic Ca2+ signal increased but remained localized to the postsynaptic membrane. In addition, we showed that the plasma membrane Ca2+-ATPase (PMCA) played a role in extruding Ca2+ from the postsynaptic region of the muscle. Drosophila melanogaster has a single PMCA gene, predicted to give rise to various isoforms by alternative splicing. Using RT-PCR, we detected the expression of multiple transcripts in muscle and nervous tissues; the physiological significance of the same is yet to be determined.


1991 ◽  
Vol 66 (3) ◽  
pp. 744-761 ◽  
Author(s):  
S. M. Johnson ◽  
P. A. Getting

1. The purpose of this study was to determine the electrophysiological properties of neurons within the region of the nucleus ambiguus (NA), an area that contains the ventral respiratory group. By the use of an in vitro brain stem slice preparation, intracellular recordings from neurons in this region (to be referred to as NA neurons, n = 235) revealed the following properties: postinhibitory rebound (PIR), delayed excitation (DE), adaptation, and posttetanic hyperpolarization (PTH). NA neurons were separated into three groups on the basis of their expression of PIR and DE: PIR cells (58%), DE cells (31%), and Non cells (10%). Non cells expressed neither PIR nor DE and no cells expressed both PIR and DE. 2. PIR was a transient depolarization that produced a single action potential or a burst of action potentials when the cell was released from hyperpolarization. In the presence of tetrodotoxin (TTX), the maximum magnitude of PIR was 7-12 mV. Under voltage-clamp conditions, hyperpolarizing voltage steps elicited a small inward current during the hyperpolarization and a small inward tail current on release from hyperpolarization. These currents, which mediate PIR, were most likely due to Q-current because they were blocked with extracellular cesium and were insensitive to barium. 3. DE was a delay in the onset of action potential firing when cells were hyperpolarized before application of depolarizing current. When cells were hyperpolarized to -90 mV for greater than or equal to 300 ms, maximum delays ranged from 150 to 450 ms. The transient outward current underlying DE was presumed to be A-current because of the current's activation and inactivation characteristics and its elimination by 4-aminopyridine (4-AP). 4. Adaptation was examined by applying depolarizing current for 2.0 s and measuring the frequency of evoked action potentials. Although there was a large degree of variability in the degree of adaptation, PIR cells tended to express less adaptation than DE and Non cells. Nearly three-fourths of all NA neurons adapted rapidly (i.e., 50% adaptation in less than 200 ms), but PIR cells tended to adapt faster than DE and Non cells. PTH after a train of action potentials was relatively rare and occurred more often in DE cells (43%) and Non cells (33%) than in PIR cells (13%). PTH had a magnitude of up to 18 mV and time constants that reflected the presence of one (1.7 +/- 1.4 s, mean +/- SD) or two components (0.28 +/- 0.13 and 4.1 +/- 2.2 s).(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Leonard K. Kaczmarek

The intrinsic electrical properties of neurons are extremely varied. For example, the width of action potentials in different neurons varies by more than an order of magnitude. In response to prolonged stimulation, some neurons generate repeated action potential hundreds of times a second, while others fire only a single action potential or adapt very rapidly. These differences result from the expression of different types of ion channels in the plasma membrane. The dominant channels that shape neuronal firing patterns are those that are selective for sodium, calcium, and potassium ions. This chapter provides a brief overview of the biophysical properties of each of these classes of channel, their role in shaping the electrical personality of a neuron, and how interactions of these channels with cytoplasmic factors shape the overall cell biology of a neuron.


Sign in / Sign up

Export Citation Format

Share Document