Excitable Membrane Properties of Neurons

Author(s):  
Leonard K. Kaczmarek

The intrinsic electrical properties of neurons are extremely varied. For example, the width of action potentials in different neurons varies by more than an order of magnitude. In response to prolonged stimulation, some neurons generate repeated action potential hundreds of times a second, while others fire only a single action potential or adapt very rapidly. These differences result from the expression of different types of ion channels in the plasma membrane. The dominant channels that shape neuronal firing patterns are those that are selective for sodium, calcium, and potassium ions. This chapter provides a brief overview of the biophysical properties of each of these classes of channel, their role in shaping the electrical personality of a neuron, and how interactions of these channels with cytoplasmic factors shape the overall cell biology of a neuron.

2005 ◽  
Vol 94 (6) ◽  
pp. 4430-4440 ◽  
Author(s):  
Sofija Andjelic ◽  
Vincent Torre

Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (Δ F/ F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. Δ F/ F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, Δ F/ F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.


2003 ◽  
Vol 89 (2) ◽  
pp. 657-664 ◽  
Author(s):  
Robert R. Buss ◽  
Charles W. Bourque ◽  
Pierre Drapeau

The physiological and pharmacological properties of the motoneuron membrane and action potential were investigated in larval zebrafish using whole cell patch current-clamp recording techniques. Action potentials were eliminated in tetrodotoxin, repolarized by tetraethylammonium (TEA) and 3,4-diaminopyridine (3,4-AP)-sensitive potassium conductances, and had a cobalt-sensitive, high-threshold calcium component. Depolarizing current injection evoked a brief (approximately 10–30 ms) burst of action potentials that was terminated by strong, outwardly rectifying voltage-activated potassium and calcium-dependent conductances. In the presence of intracellular cesium ions, a prolonged plateau potential often followed brief depolarizations. During larval development (hatching to free-swimming), the resting membrane conductance increased in a population of motoneurons, which tended to reduce the apparent outward rectification of the membrane. The conductances contributing to action potential burst termination are hypothesized to play a role in patterning the synaptically driven motoneuron output in these rapidly swimming fish.


1991 ◽  
Vol 66 (3) ◽  
pp. 744-761 ◽  
Author(s):  
S. M. Johnson ◽  
P. A. Getting

1. The purpose of this study was to determine the electrophysiological properties of neurons within the region of the nucleus ambiguus (NA), an area that contains the ventral respiratory group. By the use of an in vitro brain stem slice preparation, intracellular recordings from neurons in this region (to be referred to as NA neurons, n = 235) revealed the following properties: postinhibitory rebound (PIR), delayed excitation (DE), adaptation, and posttetanic hyperpolarization (PTH). NA neurons were separated into three groups on the basis of their expression of PIR and DE: PIR cells (58%), DE cells (31%), and Non cells (10%). Non cells expressed neither PIR nor DE and no cells expressed both PIR and DE. 2. PIR was a transient depolarization that produced a single action potential or a burst of action potentials when the cell was released from hyperpolarization. In the presence of tetrodotoxin (TTX), the maximum magnitude of PIR was 7-12 mV. Under voltage-clamp conditions, hyperpolarizing voltage steps elicited a small inward current during the hyperpolarization and a small inward tail current on release from hyperpolarization. These currents, which mediate PIR, were most likely due to Q-current because they were blocked with extracellular cesium and were insensitive to barium. 3. DE was a delay in the onset of action potential firing when cells were hyperpolarized before application of depolarizing current. When cells were hyperpolarized to -90 mV for greater than or equal to 300 ms, maximum delays ranged from 150 to 450 ms. The transient outward current underlying DE was presumed to be A-current because of the current's activation and inactivation characteristics and its elimination by 4-aminopyridine (4-AP). 4. Adaptation was examined by applying depolarizing current for 2.0 s and measuring the frequency of evoked action potentials. Although there was a large degree of variability in the degree of adaptation, PIR cells tended to express less adaptation than DE and Non cells. Nearly three-fourths of all NA neurons adapted rapidly (i.e., 50% adaptation in less than 200 ms), but PIR cells tended to adapt faster than DE and Non cells. PTH after a train of action potentials was relatively rare and occurred more often in DE cells (43%) and Non cells (33%) than in PIR cells (13%). PTH had a magnitude of up to 18 mV and time constants that reflected the presence of one (1.7 +/- 1.4 s, mean +/- SD) or two components (0.28 +/- 0.13 and 4.1 +/- 2.2 s).(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 84 (5) ◽  
pp. 2398-2408 ◽  
Author(s):  
Nathan P. Staff ◽  
Hae-Yoon Jung ◽  
Tara Thiagarajan ◽  
Michael Yao ◽  
Nelson Spruston

Action potentials are the end product of synaptic integration, a process influenced by resting and active neuronal membrane properties. Diversity in these properties contributes to specialized mechanisms of synaptic integration and action potential firing, which are likely to be of functional significance within neural circuits. In the hippocampus, the majority of subicular pyramidal neurons fire high-frequency bursts of action potentials, whereas CA1 pyramidal neurons exhibit regular spiking behavior when subjected to direct somatic current injection. Using patch-clamp recordings from morphologically identified neurons in hippocampal slices, we analyzed and compared the resting and active membrane properties of pyramidal neurons in the subiculum and CA1 regions of the hippocampus. In response to direct somatic current injection, three subicular firing types were identified (regular spiking, weak bursting, and strong bursting), while all CA1 neurons were regular spiking. Within subiculum strong bursting neurons were found preferentially further away from the CA1 subregion. Input resistance ( R N), membrane time constant (τm), and depolarizing “sag” in response to hyperpolarizing current pulses were similar in all subicular neurons, while R N and τm were significantly larger in CA1 neurons. The first spike of all subicular neurons exhibited similar action potential properties; CA1 action potentials exhibited faster rising rates, greater amplitudes, and wider half-widths than subicular action potentials. Therefore both the resting and active properties of CA1 pyramidal neurons are distinct from those of subicular neurons, which form a related class of neurons, differing in their propensity to burst. We also found that both regular spiking subicular and CA1 neurons could be transformed into a burst firing mode by application of a low concentration of 4-aminopyridine, suggesting that in both hippocampal subfields, firing properties are regulated by a slowly inactivating, D-type potassium current. The ability of all subicular pyramidal neurons to burst strengthens the notion that they form a single neuronal class, sharing a burst generating mechanism that is stronger in some cells than others.


2019 ◽  
Vol 1 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Abdallah Barjas Qaswal

The myelin sheath facilitates action potential conduction along the axons, however, the mechanism by which myelin maintains the spatiotemporal fidelity and limits the hyperexcitability among myelinated neurons requires further investigation. Therefore, in this study, the model of quantum tunneling of potassium ions through the closed channels is used to explore this function of myelin. According to the present calculations, when an unmyelinated neuron fires, there is a probability of 9.15 × 10 − 4 that it will induce an action potential in other unmyelinated neurons, and this probability varies according to the type of channels involved, the channels density in the axonal membrane, and the surface area available for tunneling. The myelin sheath forms a thick barrier that covers the potassium channels and prevents ions from tunneling through them to induce action potential. Hence, it confines the action potentials spatiotemporally and limits the hyperexcitability. On the other hand, lack of myelin, as in unmyelinated neurons or demyelinating diseases, exposes potassium channels to tunneling by potassium ions and induces the action potential. This approach gives different perspectives to look at the interaction between neurons and explains how quantum physics might play a role in the actions occurring in the nervous system.


2003 ◽  
Vol 285 (6) ◽  
pp. C1464-C1474 ◽  
Author(s):  
B. Gong ◽  
D. Legault ◽  
T. Miki ◽  
S. Seino ◽  
J. M. Renaud

Although ATP-sensitive K+ (KATP) channel openers depress force, channel blockers have no effect. Furthermore, the effects of channel openers on single action potentials are quite small. These facts raise questions as to whether 1) channel openers reduce force via an activation of KATP channels or via some nonspecific effects and 2) the reduction in force by KATP channels operates by changes in amplitude and duration of the action potential. To answer the first question we tested the hypothesis that pinacidil, a channel opener, does not affect force during fatigue in muscles of Kir6.2-/- mice that have no cell membrane KATP channel activity. When wild-type extensor digitorum longus (EDL) and soleus muscles were stimulated to fatigue with one tetanus per second, pinacidil increased the rate at which force decreased, prevented a rise in resting tension, and improved force recovery. Pinacidil had none of these effects in Kir6.2-/- muscles. To answer the second question, we tested the hypothesis that the effects of KATP channels on membrane excitability are greater during action potential trains than on single action potentials, especially during metabolic stress such as fatigue. During fatigue, M wave areas of control soleus remained constant for 90 s, suggesting no change in action potential amplitude for half of the fatigue period. In the presence of pinacidil, the decrease in M wave areas became significant within 30 s, during which time the rate of fatigue also became significantly faster compared with control muscles. It is therefore concluded that, once activated, KATP channels depress force and that this depression involves a reduction in action potential amplitude.


1994 ◽  
Vol 71 (6) ◽  
pp. 2217-2235 ◽  
Author(s):  
S. Williams ◽  
D. D. Samulack ◽  
C. Beaulieu ◽  
J. C. LaCaille

1. The membrane properties and synaptic inputs of interneurons, located at the stratum (s.) lacunosum-moleculare and radiatum border (L-M) of the CA1 region, were examined with the use of current-clamp whole-cell recordings in rat hippocampal slices. 2. Biocytin-labeled L-M interneurons had nonpyramidal somata and aspinous, often beaded, dendrites that arborized in s. lacunosum-moleculare and radiatum, sometimes as far as s. moleculare of the dentate gyrus. Their axon coursed and branched in s. lacunosum-moleculare and radiatum. Axon collaterals were also observed traversing the hippocampal fissure and arborizing in s. moleculare of the dentate gyrus and s. radiatum of the CA3 region. 3. Several membrane properties of interneurons were typically nonpyramidal: they had large input resistances, short-duration action potentials followed by prominent fast afterhyperpolarizations, and responded to hyperpolarizing current pulses with little membrane rectification. L-M interneurons showed significant anodal break responses, and their mean membrane time constant was 33 ms. After-depolarizations elicited by subthreshold depolarizing current pulses were larger in amplitude and decayed more slowly at depolarized than hyperpolarized membrane potentials. 4. The majority of L-M interneurons (35 of 49 cells) were silent at resting membrane potentials, whereas other displayed either spontaneous single action potentials (n = 12) or rhythmic bursts (n = 2). The rhythmic bursts were insensitive to the N-methyl-D-aspartate (NMDA) and non-NMDA excitatory amino acid receptor antagonists, 2-amino-5-phosphonopentanoic acid (AP-5; 50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM), respectively. Both spontaneous single action potentials and burst firing were blocked by membrane hyperpolarization, suggesting that they were intrinsically rather than synaptically generated. 5. L-M interneurons responded with regular sustained firing to depolarizing current pulses at resting membrane potential. However, at more hyperpolarized membrane potentials (near -75 mV), depolarizing current pulses elicited action-potential firing with a delayed onset. This suggests that voltage-sensitive, transient outward currents may be activated in L-M interneurons from hyperpolarized membrane potentials. 6. Electrical stimulation of s. radiatum or lacunosum-moleculare elicited predominantly long-duration excitatory postsynaptic potentials (EPSPs; n = 20 cells), or both EPSPs and inhibitory postsynaptic potentials (IPSPs; n = 17 cells). In most L-M interneurons (35/37), with increasing intensities, up to two action potentials were elicited. Occasionally, larger bursts (3–5 action potentials) were observed (n = 2). 7. The multiphasic components of the synaptic responses became more evident when stimulations were repeated at different membrane potentials.(ABSTRACT TRUNCATED AT 400 WORDS)


2012 ◽  
Vol 302 (7) ◽  
pp. G740-G747 ◽  
Author(s):  
Galya R. Abdrakhmanova ◽  
Minho Kang ◽  
M. Imad Damaj ◽  
Hamid I. Akbarali

Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L1-L2) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation ( 1 ). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from −37 to −32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L1-L2) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.


1996 ◽  
Vol 75 (1) ◽  
pp. 154-170 ◽  
Author(s):  
M. E. Larkum ◽  
M. G. Rioult ◽  
H. R. Luscher

1. We examined the propagation of action potentials in the dendrites of ventrally located presumed motoneurons of organotypic rat spinal cord cultures. Simultaneous patch electrode recordings were made from the dendrites and somata of individual cells. In other experiments we visualized the membrane voltage over all the proximal dendrites simultaneously using a voltage-sensitive dye and an array of photodiodes. Calcium imaging was used to measure the dendritic rise in Ca2+ accompanying the propagating action potentials. 2. Spontaneous and evoked action potentials were recorded using high-resistance patch electrodes with separations of 30-423 microm between the somatic and dendritic electrodes. 3. Action potentials recorded in the dendrites varied considerably in amplitude but were larger than would be expected if the dendrites were to behave as passive cables (sometimes little or no decrement was seen for distances of > 100 microm). Because the amplitude of the action potentials in different dendrites was not a simple function of distance from the soma, we suggest that the conductance responsible for the boosting of the action potential amplitude varied in density from dendrite to dendrite and possibly along each dendrite. 4. The dendritic action potentials were usually smaller and broader and arrived later at the dendritic electrode than at the somatic electrode irrespective of whether stimulation occurred at the dendrite or soma or as a result of spontaneous synaptic activity. This is clear evidence that the action potential is initiated at or near the soma and spreads out into the dendrites. The conduction velocity of the propagating action potential was estimated to be 0.5 m/s. 5. The voltage time courses of previously recorded action potentials were generated at the soma using voltage clamp before and after applying 1 microM tetrodotoxin (TTX) over the soma and dendrites. TTX reduced the amplitude of the action potential at the dendritic electrode to a value in the range expected for dendrites that behave as passive cables. This indicates that the conductance responsible for the actively propagating action potentials is a Na+ conductance. 6. The amplitude of the dendritic action potential could also be initially reduced more than the somatic action potential using 1-10 mM QX-314 (an intracellular sodium channel blocker) in the dendritic electrode as the drug diffused from the dendritic electrode toward the soma. Furthermore, in some cases the action potential elicited by current injection into the dendrite had two components. The first component was blocked by QX-314 in the first few seconds of the diffusion of the blocker. 7. In some cells, an afterdepolarizing potential (ADP) was more prominent in the dendrite than in the soma. This ADP could be reversibly blocked by 1 mM Ni2+ or by perfusion of a nominally Ca2+-free solution over the soma and dendrites. This suggests that the back-propagating action potential caused an influx of Ca2+ predominantly in the dendrites. 8. With the use of a voltage-sensitive dye (di-8-ANEPPS) and an array of photodiodes, the action potential was tracked along all the proximal dendrites simultaneously. The results confirmed that the action potential propagated actively, in contrast to similarly measured hyperpolarizing pulses that spread passively. There were also indications that the action potential was not uniformly propagated in all the dendrites, suggesting the possibility that the distribution of Na+ channels over the dendritic membrane is not uniform. 9. Calcium imaging with the Ca2+ fluorescent indicator Fluo-3 showed a larger percentage change in fluorescence in the dendrites than in the soma. Both bursts and single action potentials elicited sharp rises in fluorescence in the proximal dendrites, suggesting that the back-propagating action potential causes a concomitant rise in intracellular calcium concentration...


2000 ◽  
Vol 84 (3) ◽  
pp. 1404-1413 ◽  
Author(s):  
Tomoshige Koga ◽  
Robert M. Bradley

The properties of afferent sensory neurons supplying taste receptors on the tongue were examined in vitro. Neurons in the geniculate (GG) and petrosal ganglia (PG) supplying the tongue were fluorescently labeled, acutely dissociated, and then analyzed using patch-clamp recording. Measurement of the dissociated neurons revealed that PG neurons were significantly larger than GG neurons. The active and passive membrane properties of these ganglion neurons were examined and compared with each other. There were significant differences between the properties of neurons in the PG and GG ganglia. The mean membrane time constant, spike threshold, action potential half-width, and action potential decay time of GG neurons was significantly less than those of PG neurons. Neurons in the PG had action potentials that had a fast rise and fall time (sharp action potentials) as well as action potentials with a deflection or hump on the falling phase (humped action potentials), whereas action potentials of GG neurons were all sharp. There were also significant differences in the response of PG and GG neurons to the application of acetylcholine (ACh), serotonin (5HT), substance P (SP), and GABA. Whereas PG neurons responded to ACh, 5HT, SP, and GABA, GG neurons only responded to SP and GABA. In addition, the properties of GG neurons were more homogeneous than those of the PG because all the GG neurons had sharp spikes and when responses to neurotransmitters occurred, either all or most of the neurons responded. These differences between neurons of the GG and PG may relate to the type of receptor innervated. PG ganglion neurons innervate a number of receptor types on the posterior tongue and have more heterogeneous properties, while GG neurons predominantly innervate taste buds and have more homogeneous properties.


Sign in / Sign up

Export Citation Format

Share Document