An experimental study on the retrofitting effects of reinforced concrete columns damaged by rebar corrosion strengthened with carbon fiber sheets

2003 ◽  
Vol 33 (4) ◽  
pp. 563-570 ◽  
Author(s):  
Han-Seung Lee ◽  
Tadatsugu Kage ◽  
Takafumi Noguchi ◽  
Fuminori Tomosawa
2018 ◽  
Vol 183 ◽  
pp. 02008 ◽  
Author(s):  
Pavlo Krainskyi ◽  
Yaroslav Blikharskyy ◽  
Roman Khmil ◽  
Zinoviy Blikharskyy

The need of structural retrofitting and strengthening of different buildings, engineering structures or their elements is always present. Among the main reasons are demages and material deterioration due to aging, improper maintenance or physical damages; planed repairs; reconstruction or extension of the building; technical modification or complete change of operations inside the building or the structure, etc. In some cases operation of the building during retrofitting or strengthening of its structures has to be partially or fully stopped. In other cases the strengthening process takes place while the building is still operational which means that structures are strengthened under service loads. The main goal of this research is to determine the strengthening effect of reinforced concrete jacketing applied to columns under service load level. For that the experimental study of six reinforced concrete columns were carried out: four reference columns, both strengthened by jacketing and unstrengthened and two strengthened under service load. The main results of the research are presented.


Author(s):  
Hesham A. Haggag ◽  
Nagy F. Hanna ◽  
Ghada G. Ahmed

The axial strength of reinforced concrete columns is enhanced by wrapping them with Fiber Reinforced Polymers, FRP, fabrics.  The efficiency of such enhancement is investigated for columns when they are subjected to repeated lateral loads accompanied with their axial loading.  The current research presents that investigation for Glass and Carbon Fiber Reinforced Polymers (GFRP and CFRP) strengthening as well.  The reduction of axial loading capacity due to repeated loads is evaluated. The number of applied FRP plies with different types (GFRP or CFRP) are considered as parameters in our study. The study is evaluated experimentally and numerically.  The numerical investigation is done using ANSYS software. The experimental testing are done on five half scale reinforced concrete columns.  The loads are applied into three stages. Axial load are applied on specimen in stage 1 with a value of 30% of the ultimate column capacity. In stage 2, the lateral loads are applied in repeated manner in the existence of the vertical loads.  In the last stage the axial load is continued till the failure of the columns. The final axial capacities after applying the lateral action, mode of failure, crack patterns and lateral displacements are recorded.   Analytical comparisons for the analyzed specimens with the experimental findings are done.  It is found that the repeated lateral loads decrease the axial capacity of the columns with a ratio of about (38%-50%).  The carbon fiber achieved less reduction in the column axial capacity than the glass fiber.  The column confinement increases the ductility of the columns under the lateral loads.


2011 ◽  
Vol 105-107 ◽  
pp. 948-952
Author(s):  
Pin Wu Guan ◽  
Meng Chen

An experiment on shear capacity for HRB500 grade R/C frame columns within yield hinge regions is studied. The different failure modes for specimens within yield hinge regions are classified, and the hysteretic curves are studied. The shear contributions of stirrups and concrete for columns are analyzed in detail. Based on the experimental study, formulas for the shear capacity of reinforced concrete columns are supposed under seismic loading, and the different formulas are adopted to estimate the shear capacity for columns at different seismic levels, Both security and economy of structural design are all considered.


Sign in / Sign up

Export Citation Format

Share Document