scholarly journals Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers

2000 ◽  
Vol 220 (1-3) ◽  
pp. 51-56 ◽  
Author(s):  
Yair Caro ◽  
Yusheng Li ◽  
Cecil C. Rousseau ◽  
Yuming Zhang
10.37236/8801 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Robert A. Krueger

Let $f(K_n, H, q)$ be the minimum number of colors needed to edge-color $K_n$ so that every copy of $H$ is colored with at least $q$ colors. Originally posed by Erdős and Shelah when $H$ is complete, the asymptotics of this extremal function have been extensively studied when $H$ is a complete graph or a complete balanced bipartite graph. Here we investigate this function for some other $H$, and in particular we determine the asymptotic behavior of $f(K_n, P_v, q)$ for almost all values of $v$ and $q$, where $P_v$ is a path on $v$ vertices.


Author(s):  
ANTÓNIO GIRÃO ◽  
BHARGAV NARAYANAN

Abstract We prove Turán-type theorems for two related Ramsey problems raised by Bollobás and by Fox and Sudakov. First, for t ≥ 3, we show that any two-colouring of the complete graph on n vertices that is δ-far from being monochromatic contains an unavoidable t-colouring when δ ≫ n−1/t, where an unavoidable t-colouring is any two-colouring of a clique of order 2t in which one colour forms either a clique of order t or two disjoint cliques of order t. Next, for t ≥ 3, we show that any tournament on n vertices that is δ-far from being transitive contains an unavoidable t-tournament when δ ≫ n−1/[t/2], where an unavoidable t-tournament is the blow-up of a cyclic triangle obtained by replacing each vertex of the triangle by a transitive tournament of order t. Conditional on a well-known conjecture about bipartite Turán numbers, both our results are sharp up to implied constants and hence determine the order of magnitude of the corresponding off-diagonal Ramsey numbers.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
M. M. M. Jaradat ◽  
M. S. A. Bataineh ◽  
S. M. E. Radaideh

The graph Ramsey number is the smallest integer with the property that any complete graph of at least vertices whose edges are colored with two colors (say, red and blue) contains either a subgraph isomorphic to all of whose edges are red or a subgraph isomorphic to all of whose edges are blue. In this paper, we consider the Ramsey numbers for theta graphs. We determine , for . More specifically, we establish that for . Furthermore, we determine for . In fact, we establish that if is even, if is odd.


10.37236/6019 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Péter Csikvári ◽  
Zhicong Lin

Let $\hom(H,G)$ denote the number of homomorphisms from a graph $H$ to a graph $G$. Sidorenko's conjecture asserts that for any bipartite graph $H$, and a graph $G$ we have$$\hom(H,G)\geq v(G)^{v(H)}\left(\frac{\hom(K_2,G)}{v(G)^2}\right)^{e(H)},$$where $v(H),v(G)$ and $e(H),e(G)$ denote the number of vertices and edges of the graph $H$ and $G$, respectively. In this paper we prove Sidorenko's conjecture for certain special graphs $G$: for the complete graph $K_q$ on $q$ vertices, for a $K_2$ with a loop added at one of the end vertices, and for a path on $3$ vertices with a loop added at each vertex. These cases correspond to counting colorings, independent sets and Widom-Rowlinson colorings of a graph $H$. For instance, for a bipartite graph $H$ the number of $q$-colorings $\mathrm{ch}(H,q)$ satisfies$$\mathrm{ch}(H,q)\geq q^{v(H)}\left(\frac{q-1}{q}\right)^{e(H)}.$$In fact, we will prove that in the last two cases (independent sets and Widom-Rowlinson colorings) the graph $H$ does not need to be bipartite. In all cases, we first prove a certain correlation inequality which implies Sidorenko's conjecture in a stronger form.


2017 ◽  
Vol 1 (2) ◽  
pp. 9
Author(s):  
Chula Jayawardene

<p>Let $P_n$ represent the path of size $n$. Let $K_{1,m-1}$ represent a star of size $m$ and be denoted by $S_{m}$. Given a two coloring of the edges of a complete graph $K_{j \times s}$ we say that $K_{j \times s}\rightarrow (P_n,S_{m+1})$ if there is a copy of $P_n$ in the first color or a copy of $S_{m+1}$ in the second color. The size Ramsey multipartite number $m_j(P_n, S_{m+1})$ is the smallest natural number $s$ such that $K_{j \times s}\rightarrow (P_n,S_{m+1})$. Given $j,n,m$ if $s=\left\lceil \dfrac{n+m-1-k}{j-1} \right\rceil$, in this paper, we show that the size Ramsey numbers $m_j(P_n,S_{m+1})$ is bounded above by $s$ for $k=\left\lceil \dfrac{n-1}{j} \right\rceil$. Given $j\ge 3$ and $s$, we will obtain an infinite class $(n,m)$ that achieves this upper bound $s$. In the later part of the paper, will also investigate necessary and sufficient conditions needed for the upper bound to hold.</p>


2011 ◽  
Vol 3 (2) ◽  
pp. 321-329 ◽  
Author(s):  
R. Ponraj ◽  
J. X. V. Parthipan ◽  
R. Kala

Let G be a (p,q) graph. An injective map ƒ: V (G) →{±1, ±2,...,±p} is called a pair sum labeling if the induced edge function, ƒe: E(G)→Z -{0} defined by ƒe (uv)=ƒ(u)+ƒ(v) is one-one and ƒe(E(G)) is either of the form {±k1, ±k2,…, ±kq/2} or {±k1, ±k2,…, ±k(q-1)/2} {k (q+1)/2} according as q is even or odd. Here we prove that every graph is a subgraph of a connected pair sum graph. Also we investigate the pair sum labeling of some graphs which are obtained from cycles. Finally we enumerate all pair sum graphs of order ≤ 5.Keywords: Cycle; Path; Bistar; Complete graph; Complete bipartite graph; Triangular snake.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.6290                 J. Sci. Res. 3 (2), 321-329 (2011)


2009 ◽  
Vol 18 (1-2) ◽  
pp. 247-258 ◽  
Author(s):  
PO-SHEN LOH ◽  
BENNY SUDAKOV

For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge colouring of the complete graph on n vertices (with any number of colours) has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T. Here, a subgraph is said to be rainbow if all of its edges have different colours. It is an immediate consequence of the Erdős–Rado Canonical Ramsey Theorem that f(S, T) exists if and only if S is a star or T is acyclic. Much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang and Ling showed that f(S, T) ≤ O(st2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this paper, we study this case and show that f(S, Pt) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.


1970 ◽  
Vol 22 (5) ◽  
pp. 1082-1096 ◽  
Author(s):  
Don R. Lick ◽  
Arthur T. White

Graphs possessing a certain property are often characterized in terms of a type of configuration or subgraph which they cannot possess. For example, a graph is totally disconnected (or, has chromatic number one) if and only if it contains no lines; a graph is a forest (or, has point-arboricity one) if and only if it contains no cycles. Chartrand, Geller, and Hedetniemi [2] defined a graph to have property Pn if it contains no subgraph homeomorphic from the complete graph Kn+1 or the complete bipartite graphFor the first four natural numbers n, the graphs with property Pn are exactly the totally disconnected graphs, forests, outerplanar and planar graphs, respectively. This unification suggested the extension of many results known to hold for one of the above four classes of graphs to one or more of the remaining classes.


2020 ◽  
Vol 30 (1) ◽  
pp. 7-22
Author(s):  
Boris A. Pogorelov ◽  
Marina A. Pudovkina

AbstractThe Jevons group AS̃n is an isometry group of the Hamming metric on the n-dimensional vector space Vn over GF(2). It is generated by the group of all permutation (n × n)-matrices over GF(2) and the translation group on Vn. Earlier the authors of the present paper classified the submetrics of the Hamming metric on Vn for n ⩾ 4, and all overgroups of AS̃n which are isometry groups of these overmetrics. In turn, each overgroup of AS̃n is known to define orbital graphs whose “natural” metrics are submetrics of the Hamming metric. The authors also described all distance-transitive orbital graphs of overgroups of the Jevons group AS̃n. In the present paper we classify the distance-transitive orbital graphs of overgroups of the Jevons group. In particular, we show that some distance-transitive orbital graphs are isomorphic to the following classes: the complete graph 2n, the complete bipartite graph K2n−1,2n−1, the halved (n + 1)-cube, the folded (n + 1)-cube, the graphs of alternating forms, the Taylor graph, the Hadamard graph, and incidence graphs of square designs.


1988 ◽  
Vol 72 (1-3) ◽  
pp. 103-112 ◽  
Author(s):  
P. Erdöos ◽  
R.J. Faudree ◽  
C.C. Rousseau ◽  
R.H. Schelp

Sign in / Sign up

Export Citation Format

Share Document