Upper mantle low anisotropy channels below the Pacific Plate

2002 ◽  
Vol 202 (2) ◽  
pp. 263-274 ◽  
Author(s):  
J.-P Montagner
2006 ◽  
Vol 409 (1) ◽  
pp. 723-726 ◽  
Author(s):  
Yu. A. Zorin ◽  
E. Kh. Turutanov ◽  
V. M. Kozhevnikov ◽  
S. V. Rasskazov ◽  
A. V. Ivanov

2021 ◽  
Vol 11 (15) ◽  
pp. 7030
Author(s):  
Cheolhong Kim ◽  
Naing Aung Khant ◽  
Yongmun Jeon ◽  
Heejung Kim ◽  
Chungwan Lim

The major and trace elements of Quaternary alkaline volcanic rocks on Jeju Island were analyzed to determine their origin and formation mechanism. The samples included tephrite, trachybasalts, basaltic trachyandesites, tephriphonolites, trachytes, and mantle xenoliths in the host basalt. Although the samples exhibited diversity in SiO2 contents, the relations of Zr vs. Nb and La vs. Nb indicated that the rocks were formed from the fractional crystallization of a single parent magma with slight continental crustal contamination (r: 0–0.3 by AFC modeling), rather than by the mixing of different magma sources. The volcanic rocks had an enriched-mantle-2-like ocean island basalt signature and the basalt was formed by partial melting of the upper mantle, represented by the xenolith samples of our study. The upper mantle of Jeju was affected by arc magmatism, associated with the subduction of the Pacific Plate beneath the Eurasian Plate. Therefore, we inferred that two separate magmatic events occurred on Jeju Island: one associated with the subduction of the Pacific Plate beneath the Eurasian Plate (represented by xenoliths), and another associated with a divergent setting when intraplate magmatism occurred (represented by the host rocks). With AFC modeling, it can be proposed that the Jeju volcanic rocks were formed by the fractional crystallization of the upper mantle combined with assimilation of the continental crust. The xenoliths in this study had different geochemical patterns from previously reported xenoliths, warranting further investigations.


2017 ◽  
Author(s):  
Vasileios Chatzaras ◽  
◽  
Thomas van der Werf ◽  
Leo M. Kriegsman ◽  
Andreas K. Kronenberg ◽  
...  

2019 ◽  
pp. 27-45
Author(s):  
M. V. Kononov ◽  
L. I. Lobkovsky

Abstract The paper considers the history of the spreading of the Eurasian basin. The sharp deceleration of the spreading rate in the Eocene about 46 million years ago, which is fixed by the distribution of linear magnetic anomalies, is noted. That jump in velocity is clarified from the perspective of the geodynamic model but shouldnt be explained by the northern motion of Greenland. The geodynamic processes of the Pacific subduction zone generate an upper mantle convective cell with return flow dragging the Arctic continental lithosphere in the direction of the Pacific subduction zone. The geodynamic mechanism is confirmed by seismic tomographic mantle sections of the northeastern margin of Asia and the numerical model of the upper mantle convection of the active continental margin. It is the activity of the upper mantle convective return cell, which is determined by the runoff volume and, ultimately, the speed and direction of the Kula plate and Pacific plate subduction vectors in the subduction zone, affects tectonics and kinematics of the plates of the Eurasian basin. In the Middle CretaceousMiddle Eocene and for about 73 Ma the return cell has been active, since the Kula and Pacific plates move north and submerged orthogonally beneath the Central Arctic. After the Middle Eocene geodynamic reorganization about 47.5 million years ago, oceanic plates in the Pacific Ocean begin to move to the northwest. As a result, the transport of the oceanic Pacific Ocean lithospheric substance to the arctic convective return cell has practically ceased. After the restructuring, the spreading of the Eurasian basin slowed down about 46 million years ago to an ultra-slow regime. The main tectonic and geodynamic consequences of applying the proposed geodynamic model for the Arctic in the Late CretaceousCenozoic are considered.


1976 ◽  
Vol 13 (3) ◽  
pp. 212-217 ◽  
Author(s):  
Han-Shou Liu ◽  
Edward S. Chang ◽  
George H. Wyatt

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


1988 ◽  
Vol 15 (13) ◽  
pp. 1483-1486 ◽  
Author(s):  
J. C. Lahr ◽  
R. A. Page ◽  
C. D. Stephens ◽  
D. H. Christensen

2016 ◽  
Vol 2 (7) ◽  
pp. e1600022 ◽  
Author(s):  
Lydian M. Boschman ◽  
Douwe J. J. van Hinsbergen

The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate’s birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of “Thalassa Incognita” that comprises the comprehensive Panthalassa Ocean surrounding Pangea.


Sign in / Sign up

Export Citation Format

Share Document