RHEOLOGY OF THE LOWER CRUST AND UPPER MANTLE IN THE ACTIVE BOUNDARY BETWEEN THE PACIFIC PLATE AND BAJA CALIFORNIA MICROPLATE

2017 ◽  
Author(s):  
Vasileios Chatzaras ◽  
◽  
Thomas van der Werf ◽  
Leo M. Kriegsman ◽  
Andreas K. Kronenberg ◽  
...  
Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1211-1239 ◽  
Author(s):  
Thomas van der Werf ◽  
Vasileios Chatzaras ◽  
Leo Marcel Kriegsman ◽  
Andreas Kronenberg ◽  
Basil Tikoff ◽  
...  

Abstract. The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene–Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750–890 °C and pressures of 400–560 MPa, corresponding to 15–22 km depth. A hot crustal geotherm of 40 ° C km−1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12–33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12–17 MPa) in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1–1.3×1020 Pa ⋅ s for the high temperature conditions (890 °C) in the lower crust. Significantly lower viscosities in the range of 1016–1019 Pa ⋅ s, were estimated using flow laws for wet plagioclase. The shallow upper mantle has a low viscosity of 5.7×1019 Pa ⋅ s, which indicates the lack of an upper-mantle lid beneath northern Baja California. Our data show that during post-seismic transients, the upper mantle and the lower crust in the Pacific–Baja California plate boundary are characterized by similar and low differential stress. Transient viscosity of the lower crust is similar to the viscosity of the upper mantle.


2017 ◽  
Author(s):  
Thomas van der Werf ◽  
Vasileios Chatzaras ◽  
Leo M. Kriegsman ◽  
Andreas Kronenberg ◽  
Basil Tikoff ◽  
...  

Abstract. The rheology of lower crust and its time-dependent behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of mafic granulite and lherzolite xenoliths from the Holocene San Quintin volcanic field, of northern Baja California, Mexico. The San Quintin volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. Combining microstructural observations, geothermometry and phase equilibria modeling we constrain that crystal-plastic deformation took place at temperatures of 750–900 °C and pressures of 400–580 MPa, corresponding to 15–22 km depth. A hot crustal geothermal gradient of 40 °C/km is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is dry. Microstructural evidence suggests that the mafic granulite and peridotite xenoliths were dominantly deforming by processes transitional between dislocation creep and diffusion creep. Recrystallized grain size paleopiezometry yields similar differential stresses in both the uppermost lower crust and upper mantle. Using dry-plagioclase and dry-olivine flow laws we demonstrate that the viscosity of the lower crust and upper mantle is low (2.2 × 1018 – 1.4 × 1020 Pa s). Comparing the viscosity structure of the lithosphere constrained from the San Quintin xenoliths with results from post-seismic relaxation studies from western US, we suggest that lower crust is stronger during transient deformation (e.g., post-seismic relaxation period) while the upper mantle is stronger during long-term deformation (e.g., interseismic period).


2021 ◽  
Author(s):  
Colin Murphy ◽  
Rachel Bernard ◽  
Emily Chin

<p>How strain localizes in the lower crust and upper mantle to accommodate transcurrent plate motions is not well understood. Here we focus on a suite of lower crustal and upper mantle xenoliths from the San Quintin Volcanic Field (SQVF) in Baja California, Mexico, located along transcurrent faults at the margin of the Pacific plate. Previous work has suggested that in addition to significant strain localization, the lower lithosphere below SQVF has experienced partial melting, possibly through shear heating. The presence of even minor amounts of melt could significantly affect the deformation mechanisms accommodating strain. While previous studies of SQVF have largely focused on deformation in the upper mantle, less is known about strain localization in the lower crust. We have analyzed the composition and microstructures of nine xenoliths using wavelength dispersive spectroscopy (WDS) and electron backscatter diffraction (EBSD) to elucidate the relationship between melt infiltration and deformation in the lower crust of this actively-deforming region.</p><p>We categorize the suite of SQVF xenoliths into two textural and chemical groups: Group 1, consisting of undeformed mafic cumulates, and Group 2, consisting of foliated ultramafic peridotites and mafic granulites. Symplectites and corona textures with olivine-orthopyroxene-clinopyroxene+spinel symplectite-plagioclase layering preserved in Group 2 samples are interpreted to have resulted from basaltic melt infiltration during deformation. The orientation of the shape preferred orientations (SPO) of spinel and orthopyroxene grains relative to foliation in Group 2 samples is consistent with experimental studies of crystallization during melt infiltration. Evidence for deformation is also preserved in the form of moderate crystallographic preferred orientations (CPO), present in plagioclase, orthopyroxene, and olivine. Oxide weight percentages, calculated using electron microprobe data and modal phase abundances from WDS maps, were used to construct pseudosections in order to estimate equilibrium temperatures and pressures. The range of pressures across samples suggest a changing degree of deformation and degree of rock-melt interaction with depth in the lower crust of Baja California.</p>


2021 ◽  
Author(s):  
Anna Jegen ◽  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Udo Barckhausen ◽  
Ingo Heyde ◽  
...  

<p>The Lau Basin is a young back-arc basin steadily forming at the Indo-Australian-Pacific plate boundary, where the Pacific plate is subducting underneath the Australian plate along the Tonga-Kermadec island arc. Roughly 25 Ma ago, roll-back of the Kermadec-Tonga subduction zone commenced, which lead to break up of the overriding plate and thus the formation of the western Lau Ridge and the eastern Tonga Ridge separated by the emerging Lau Basin.</p><p>As an analogue to the asymmetric roll back of the Pacific plate, the divergence rates decline southwards hence dictating an asymmetric, V-shaped basin opening. Further, the decentralisation of the extensional motion over 11 distinct spreading centres and zones of active rifting has led to the formation of a composite crust formed of a microplate mosaic. A simplified three plate model of the Lau Basin comprises the Tonga plate, the Australian plate and the Niuafo'ou microplate. The northeastern boundary of the Niuafo'ou microplate is given by two overlapping spreading centres (OLSC), the southern tip of the eastern axis of the Mangatolu Triple Junction (MTJ-S) and the northern tip of the Fonualei Rift spreading centre (FRSC) on the eastern side. Slow to ultraslow divergence rates were identified along the FRSC (8-32 mm/a) and slow divergence at the MTJ (27-32 mm/a), both decreasing southwards. However, the manner of divergence has not yet been identified. Additional regional geophysical data are necessary to overcome this gap of knowledge.</p><p>Research vessel RV Sonne (cruise SO267) set out to conduct seismic refraction and wide-angle reflection data along a 185 km long transect crossing the Lau Basin at ~16 °S from the Tonga arc in the east, the overlapping spreading centres, FRSC1 and MTJ-S2, and extending as far as a volcanic ridge in the west. The refraction seismic profile consisted of 30 ocean bottom seismometers. Additionally, 2D MCS reflection seismic data as well as magnetic and gravimetric data were acquired.</p><p>The results of our P-wave traveltime tomography show a crust that varies between 4.5-6 km in thickness. Underneath the OLSC the upper crust is 2-2.5 km thick and the lower crust 2-2.5 km thick. The velocity gradients of the upper and lower crust differ significantly from tomographic models of magmatically dominated oceanic ridges. Compared to such magmatically dominated ridges, our final P-wave velocity model displays a decreased velocity gradient in the upper crust and an increased velocity gradient in the lower crust more comparable to tectonically dominated rifts with a sparse magmatic budget.</p><p>The dominance of crustal stretching in the regional rifting process leads to a tectonical stretching, thus thinning of the crust under the OLSC and therefore increasing the lower crust’s velocity gradient. Due to the limited magmatic budget of the area, neither the magnetic anomaly nor the gravity data indicate a magmatically dominated spreading centre. We conclude that extension in the Lau Basin at the OLSC at 16 °S is dominated by extensional processes with little magmatism, which is supported by the distribution of seismic events concentrated at the northern tip of the FRSC.</p>


Sign in / Sign up

Export Citation Format

Share Document