scholarly journals The ubiquitin-proteasome pathway is required for the function of the viral VP16 transcriptional activation domain

FEBS Letters ◽  
2003 ◽  
Vol 556 (1-3) ◽  
pp. 19-25 ◽  
Author(s):  
Qianzheng Zhu ◽  
Jihong Yao ◽  
Gulzar Wani ◽  
Jianming Chen ◽  
Qi-En Wang ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2653-2653
Author(s):  
Yutaka Shima ◽  
Takito Shima ◽  
Tomoki Chiba ◽  
Tatsuro Irimura ◽  
Issay Kitabayashi

Abstract The Pml gene is the target of t(15;17) chromosome translocation in acute promyelocytic leukemia. PML protein is known to localize in discrete nuclear speckles, named PML nuclear bodies (NBs). In NBs, PML interacts with several transcription factors, such as p53 and AML1, and their co-activators, such as HIPK2 and p300. PML activates transcription of their target genes. PML is thought to stabilize transcription factor complex and function as a mediator in transcription activation, but little is known about the molecular mechanism by which PML activates transcription. To clarify the role of PML in transcription regulation, we purified the PML complex and identified a novel F-box protein (FBP), Skp1, and Cullin1 (Cul1) in the PML complex by LC/MS/MS analysis. FBPs form SCF ubiquitin ligase complexes with Skp1, Cul1 and ROC1 and mediate recognition of specific substrates for ubiquitination. We found that the FBP that we identified here also forms a SCF complex with Skp1, Cul1 and ROC1. To identify substrates for the SCF complex, we tested several proteins that could bind to PML, and found that the FBP promotes degradation of HIPK2 and p300. These degradations were inhibited in the presence of a proteasome inhibitor, MG132. The FBP stimulated ubiquitination of HIPK2. These results suggest that the SCF promotes degradation of these proteins by the ubiquitin-proteasome pathway. The fact that the SCF is a part of the PML complex suggests that PML plays a role in the SCF-mediated degradation of HIPK2 and p300 by the ubiquitin-proteasome pathway. In order to clarify the role of PML in degradation of HIPK2 and p300, we tested effects of PML on the degradation and found that PML inhibited the SCF-mediated degradation of HIPK2 and p300 without inhibition of ubiquitination. To clarify roles of HIPK2, PML IV and the FBP in p53-dependent transcription, we performed reporter analysis using the MDM2 promoter in H1299 cells. Since the FBP promotes degradation of HIPK2, we initially thought that the FBP might inhibit activation of p53-dependent transcription by HIPK2 and PML IV. However, the FBP, HIPK2 and PML synergistically stimulated the p53-dependent transcriptional activation. Taken together our data suggest that the SCF-induced ubiquitination of transcription co-activators HIPK2 and p300 plays a critical role in transcriptional regulation, and that PML stimulates transcription by protecting HIPK2 and p300 from ubiquitin-dependent degradation.


2004 ◽  
Vol 40 ◽  
pp. 41-58 ◽  
Author(s):  
William B Pratt ◽  
Mario D Galigniana ◽  
Yoshihiro Morishima ◽  
Patrick J M Murphy

Unliganded steroid receptors are assembled into heterocomplexes with heat-shock protein (hsp) 90 by a multiprotein chaperone machinery. In addition to binding the receptors at the chaperone site, hsp90 binds cofactors at other sites that are part of the assembly machinery, as well as immunophilins that connect the assembled receptor-hsp90 heterocomplexes to a protein trafficking pathway. The hsp90-/hsp70-based chaperone machinery interacts with the unliganded glucocorticoid receptor to open the steroid-binding cleft to access by a steroid, and the machinery interacts in very dynamic fashion with the liganded, transformed receptor to facilitate its translocation along microtubular highways to the nucleus. In the nucleus, the chaperone machinery interacts with the receptor in transcriptional regulatory complexes after hormone dissociation to release the receptor and terminate transcriptional activation. By forming heterocomplexes with hsp90, the chaperone machinery stabilizes the receptor to degradation by the ubiquitin-proteasome pathway of proteolysis.


2015 ◽  
Vol 10 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Chakresh Jain ◽  
Shivam Arora ◽  
Aparna Khanna ◽  
Money Gupta ◽  
Gulshan Wadhwa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document