In vivo and in vitro maturation of human oocytes: effects on embryo development and polyspermic fertilization*** Supported in part by grant TA/GB/W75 from the White Top Foundation, Dundee, Scotland.

1991 ◽  
Vol 56 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Mary E. Jamieson ◽  
Richard Fleming ◽  
Samad Kader ◽  
Karen S. Ross ◽  
Robert W.S. Yates ◽  
...  
Reproduction ◽  
2001 ◽  
pp. 51-75 ◽  
Author(s):  
A Trounson ◽  
C Anderiesz ◽  
G Jones

Complete maturation of oocytes is essential for the developmental competence of embryos. Any interventions in the growth phase of the oocyte and the follicle in the ovary will affect oocyte maturation, fertilization and subsequent embryo development. Oocyte size is associated with maturation and embryo development in most species examined and this may indicate that a certain size is necessary to initiate the molecular cascade of normal nuclear and cytoplasmic maturation. The minimum size of follicle required for developmental competence in humans is 5-7 mm in diameter. Maturation in vitro can be accomplished in humans, but is associated with a loss of developmental competence unless the oocyte is near completion of its preovulatory growth phase. This loss of developmental competence is associated with the absence of specific proteins in oocytes cultured to metaphase II in vitro. The composition of culture medium used successfully for maturation of human oocytes is surprisingly similar to that originally developed for maturation of oocytes in follicle culture in vitro. The presence of follicle support cells in culture is necessary for the gonadotrophin-mediated response required to mature oocytes in vitro. Gonadotrophin concentration and the sequence of FSH and FSH-LH exposure may be important for human oocytes, particularly those not exposed to the gonadotrophin surge in vivo. More research is needed to describe the molecular and cellular events, the presence of checkpoints and the role of gene expression, translation and protein uptake on completing oocyte maturation in vitro and in vivo. In the meantime, there are very clear applications for maturing oocytes in human reproductive medicine and the success rates achieved in some of these special applications are clinically valuable.


2015 ◽  
Vol 27 (1) ◽  
pp. 245 ◽  
Author(s):  
N. W. Santiquet ◽  
A. F. Greene ◽  
W. B. Schoolcraft ◽  
R. L. Krisher

In vitro maturation (IVM) of cumulus-oocyte complexes (COC) results in oocytes with reduced quality and is still not as efficient as in vivo maturation in most species. One hypothesis that could explain the low developmental competence of oocytes following IVM is that the oocytes resume meiosis too quickly after being retrieved from the follicles. Studies in mice and bovine have shown that a short period of prematuration in the presence of cAMP modulators, before IVM, enhances oocyte developmental competence. Moreover, other studies have recently demonstrated that cGMP is also a crucial molecule involved in meiotic resumption. Here, our objective was to examine the effect of a cGMP modulator in combination with a cAMP modulator during a short period of prematuration on mouse oocyte nuclear maturation and subsequent embryo development following IVF. The COC were collected (6 replicates) from 2-month-old outbred CF1 mice 48 h after PMSG (5 IU) injection in the presence (pre-IVM) or absence (control) of cGMP and cAMP modulators. Pre-IVM COC (n = 184) were then placed in prematuration medium that also contained these cGMP and cAMP modulators. After 2 h, pre-IVM COC were washed and transferred to our in-house prepared, completely defined IVM medium (Paczkowski et al. 2014 Reprod.) for the remaining 16 h of culture; 10 oocytes per 50 µL drop under oil, at 37°C in 7.5% CO2 and 6.5% O2 due to the increased altitude at our location. Control COC (n = 161) were matured in the same IVM medium under identical conditions for 18 h, without prematuration. After IVM, oocytes were fixed for assessment of nuclear maturation, or fertilized and cultured in vitro and subsequent development (96 and 112 h) was recorded (Paczkowski et al. 2014 Reprod.). Results were analysed by ANOVA. A short 2-h prematuration period in the presence of cGMP and cAMP modulators had no impact on oocyte nuclear maturation to metaphase II after IVM or on embryo cleavage after IVF. However, pre-IVM treatment improved the developmental competence of the oocyte, as demonstrated by increased embryo development. More (P < 0.02) blastocysts (96 h of culture) and hatched blastocysts (112 h of culture) developed in the pre-IVM treatment compared to control (31.0 ± 3.4 v. 19.9 ± 3.2%; 31.5 ± 3.4 v. 19.9 ± 3.2%, respectively). In conclusion, a combination of cGMP and cAMP modulators during oocyte collection and a subsequent short pre-IVM improves oocyte developmental competence and could therefore be a potential tool to improve embryo yield following IVM.


2008 ◽  
Vol 23 (5) ◽  
pp. 1138-1144 ◽  
Author(s):  
Gayle M. Jones ◽  
David S. Cram ◽  
Bi Song ◽  
M. Cristina Magli ◽  
Luca Gianaroli ◽  
...  

2021 ◽  
Author(s):  
Yusheng Liu ◽  
Wenrong Tao ◽  
Yiwei Zhang ◽  
Hu Nie ◽  
Zhenzhen Hou ◽  
...  

Oocyte in vitro maturation is a technique of assisted reproductive technology that was first introduced in patients with polycystic ovarian syndrome and is now used in most fertility clinics. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (in vitro MII) oocytes compared with in vivo maturated metaphase II (in vivo MII) oocytes in bovines, mice, and humans. However, the underlying mechanisms of this abnormal expression are still poorly understood. In this study, we use PAIso-seq1 to reveal a transcriptome-wide expression profile of full-length transcripts containing entire poly(A) tails in in vivo and in vitro matured mouse and human oocytes. Our results indicate that more genes are up-regulated than down-regulated in in vitro MII oocytes in both mice and humans. Furthermore, we demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes in both mice and humans. We also found that the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes in mice and humans respectively, likely contributing to reduced translation and impaired global maternal mRNA deadenylation. Our findings highlight that impaired maternal mRNA deadenylation is a definite molecular defect in in vitro MII oocytes in both mice and humans. The findings here offer a new criterion for evaluating the quality of in vitro MII oocytes and a potential direction for improving in vitro maturation by fixing the dysregulated maternal mRNA deadenylation.


2008 ◽  
Vol 90 ◽  
pp. S333
Author(s):  
C. Fang ◽  
B.-y. Miao ◽  
Y.-p. Zhong ◽  
C.-q. Zhou ◽  
G.-l. Zhuang

2014 ◽  
Vol 26 (1) ◽  
pp. 195
Author(s):  
S. M. Bernal ◽  
J. Heinzmann ◽  
D. Herrmann ◽  
U. Baulain ◽  
A. Lucas-Hahn ◽  
...  

Prepubertal bovine females have been suggested as a source of oocytes in order to accelerate genetic gain and decrease the generation interval. However, prepubertal oocytes have a lower developmental competence than their adult counterparts. In vitro maturation (IVM) systems using cyclic AMP (cAMP) regulators and 30-h culture have been suggested to improve blastocyst in vitro production rates from bovine oocytes (Albuz et al., 2010). The present study evaluated the effects of an addition of the cAMP modulators forskolin, 3-isobutyl-1-methylxanthine (IBMX), and cilostamide during extended IVM on blastocyst yields and gene expression in prepubertal and adult bovine females. Holstein-Friesian donors were submitted to ovum pick-up twice per week. Oocytes from groups of 12 animals, including lactating cows (>2 lactations) and prepubertal donors (6–10 months old) were used in the following treatment groups: TCM24 (24-h IVM, routine protocol/control), cAMP30 (2-h pre-IVM culture using forskolin-IBMX and 30-h IVM adding cilostamide), DMSO30 [2-h pre-IVM culture and 30-h IVM with dimethyl sulfoxide (DMSO)/vehicle control]. In vitro-matured oocytes were fertilized and presumptive zygotes were cultured in vitro to assess embryo development. In vivo blastocysts were produced from superovulated cows and used for gene expression analysis. Cleavage rates, blastocyst formation, and mRNA abundance of selected genes were evaluated. The Glimmix procedure from SAS/STAT (SAS Institute Inc., Cary, NC, USA) was performed to compare blastocyst and cleavage rates. One-way ANOVA was implemented to evaluate gene expression. A total of 793 oocytes from the different sources were submitted to the IVM treatments. Cleavage rates (prepubertal donors: 64.6 ± 4%, 59.1 ± 6.4%, 53 ± 4.4%, cows: 55.1 ± 4.3%, 59 ± 6.5%, 50.8 ± 4.4%, for TCM24, cAMP30, and DMSO30, respectively; P > 0.05) and blastocyst/zygotes rates (prepubertal donors: 27 ± 6%; 21.8 ± 3.5%; 17.6 ± 2.4%; cows: 28 ± 3.3%; 27.7 ± 2.9%; 22.7 ± 3.2% for TCM24, cAMP30, and DMSO30, respectively; P > 0.05) did not differ among in vitro treatments. The mRNA relative abundance of the EGR1 gene was down-regulated 6-fold in all in vitro-produced blastocysts compared with their in vivo counterparts (P < 0.05). Gene expression profiles for SLC2A8, DNMT3B, BCL-XL, and PRDX1 were similar in in vitro and in vivo blastocysts. These results show similar embryo production patterns in prepubertal and adult donors. Furthermore, DMSO did not show effects on embryo developmental rates when used during IVM. The gene expression levels of EGR1 confirm our recent findings in blastocysts obtained from oocytes from slaughterhouse ovaries (data not presented), showing its usefulness as an embryo quality marker. These preliminary results indicate that oocyte developmental capacity in prepubertal donors can be similar to that of the adult donors without addition of cAMP modulators.


2005 ◽  
Vol 17 (9) ◽  
pp. 69
Author(s):  
M. Lane ◽  
C. Yeo ◽  
K. S. Cashman ◽  
H. M. Hamilton

Superovulation protocols used in IVF result in multiple eggs that can be fertilized and grown in the laboratory to allow for selection of the best embryo for return to the mother, thereby increasing the chances for a successful pregnancy. However, there are many side effects of these superovulation drug protocols, such as deep vein thrombosis and hyperstimulation. The latter is of particular concern for women with polycystic ovary syndrome. Furthermore, the use of gonadotrophins has been reported to compromise both oocyte quality and the uterine environment and may contribute to the low success rates of IVF. Therefore the ability to collect large numbers of oocytes from women and mature them in vitro is an attractive alternative. However, although there are reports in the literature on extended maturation/culture periods of human oocytes the pregnancy rates are significantly lower than that observed after in vivo maturation. The ability to offer such technology is currently limited by the lack of understanding of how the conditions for in vitro maturation affect the quality of the oocyte and the resulting embryo. Our research is concentrated on establishing the role of metabolic balance in the oocyte for the maintenance of subsequent viability. We have determined that disruptions to the balance between mitochondrial and cytoplasmic metabolism in animal oocytes have significant adverse consequences for the resultant embryo. Changing conditions for in vitro maturation were also found to alter the establishment of the metabolic settings of the oocyte. The ability to determine the role of such parameters in maturing human oocytes will be important for the prospect of adoption of this technology for routine clinical practice.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Nikiforov ◽  
S E Pors ◽  
J Cadena. Moreno ◽  
C Ydin. Andersen

Abstract Study question Based on published studies, how effective is in vitro maturation (IVM) in different patient groups, and how does the maturation rate correlate with culture conditions? Summary answer Clinical IVM is most effective when patients receive only hCG trigger prior to oocyte collection. Multiple additional parameters influencing the outcome were identified. What is known already Despite being used for more than fifty years, the overall efficacy of human IVM has not yet been determined, and results are often conflicting. Indeed, IVM is still perceived skeptically by many embryologists and doctors and not widely used in clinical practice. This review aims to collect all available data in the literature regarding the efficacy of IVM analyzing characteristics of patients, treatment, or laboratory conditions that may influence the MII-rate (MR). Study design, size, duration: A systematic search was performed in the PubMed database following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was limited to studies in the English language published before October 2020 using the following keyword: “oocyte in vitro maturation». Participants/materials, setting, methods Inclusion criteria for studies were: reporting data obtained on immature human oocytes, which transitioned to the MII stage after IVM. The requirement was that the numbers of cultured and matured oocytes were reported. If available, additional data were collected including patients’ characteristics (for example PCOS), hormonal stimulation prior to the procedure (administration of some FSH or hCG trigger or both), oocyte freezing before or after IVM, type of culture medium and supplements, etc. Main results and the role of chance A total of 350 publications were selected from 6866 search results, 436 abstracts, and 422 full read articles. Selected studies cover 21153 patients and 157420 immature oocytes cultured. It has been demonstrated that oocytes collected in vivo from adult, non-PCOS patients, who received only hCG trigger prior to the procedure had a statistically higher MII rate (66%) than oocytes from patients who received no gonadotropins or some FSH, or a combination of some FSH and hCG trigger (59%, 60% and 58% respectively). The same was valid for PCOS patients: MR in the trigger only cohort (66%) was significantly different from other cohorts. MR for in vivo collected oocytes (61%) from adult non-PCOS patients was significantly different from ex vivo collected oocytes (33%). MI stage oocytes at the moment of collection matured with a statistically higher rate (N = 4322, 73%), than GV oocytes (N = 3328, 54%). When in vitro matured oocytes were vitrified, their average survival rate was 81% (data from 50 studies on 1701 oocytes). Additionally, immature oocytes survived vitrification with a 75% rate (data from 30 studies on 4457 oocytes). Overall, ICSI fertilization rate for IVM oocytes was 69% (N = 59914). A total of 747 babies born from IVM were reported. Limitations, reasons for caution Among selected publications only 2 were randomized controlled trials and therefore the main challenge of this review is striking differences in setups among included studies. However, despite not being a meta-analysis, this study calculated MR for the most frequent treatment modalities and additional individual factors, which might influence MR. Wider implications of the findings: This review provides data regarding IVM efficiency in different cohorts of patients, performed under different culture conditions. Additional laboratory parameters influencing MR have been identified. Based on this new data, target groups benefiting the most were identified, and prognosis regarding the success of their treatment with IVM might be estimated. Trial registration number n/a


Sign in / Sign up

Export Citation Format

Share Document