Sa1914 The Genomic Landscape of Human Colon Adenomas Reveals Early Driver Mutations and a TGF-β-CEA Regulated Profile

2015 ◽  
Vol 148 (4) ◽  
pp. S-353-S-354
Author(s):  
Vipin K. Menon ◽  
Gottumukkala S. Raju ◽  
Jian Chen ◽  
Xiaoping Su ◽  
Avijit Majumdar ◽  
...  
2015 ◽  
Author(s):  
Vipin K. Menon ◽  
Raju S. Gottumukkala ◽  
Jian Chen ◽  
Xiaoping Su ◽  
Nipun Mistry ◽  
...  

2011 ◽  
Vol 4 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Emily J. Greenspan ◽  
James P. Madigan ◽  
Lisa A. Boardman ◽  
Daniel W. Rosenberg
Keyword(s):  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A871-A871
Author(s):  
Khawla Sami Al-Kuraya ◽  
Sarah Siraj ◽  
Tariq Masoodi ◽  
Abdul Khalid Siraj ◽  
Saud Azam ◽  
...  

Abstract Background: Although, standard treatment of Papillary Thyroid Carcinoma (PTC), involving surgery followed by radioactive iodine (RAI) therapy, is curative for most patients, 5-20% of patients develop RAI refractory disease. The repertoire of genomic events enabling RAI refractory disease in PTC needs elucidating. Methods: Whole-exome sequencing was performed on 100 primary PTC tumours, consisting of 47 RAI refractory and 53 RAI avid tumours, with matched germline. The resulting somatic variants were analysed to compare the genomic landscape, driver events and clinically actionable events between RAI refractory and avid PTC. Results: RAI refractory primary tumours were significantly associated with later stage, positive involvement of surgical margins, presence of extrathyroidal extension, lymph node metastases and poorer 5-year disease-free survival. Mutational burden was significantly higher, with additional subclonal mutations in RAI refractory compared to avid PTC patients. RAI refractory primary tumours showed significantly stronger PD-L1 expression. Mutations and PD-L1 expression in RAI Refractory PTC tumours significantly correlated with mutational signatures related to defective DNA base and nucleotide excision repair pathways. Driver mutations were acquired earlier in RAI refractory than in avid primary tumours. Conclusions: We conclude that RAI refractoriness is gained early in PTC, and is significantly associated with a higher mutational burden, PD-L1 expression, and mutational signatures, which may serve as important prognostic factors and indicate suitability for treatment with immune checkpoint inhibitors.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Angeline shen ◽  
Paul Wang ◽  
Sunita M C De Sousa ◽  
David J Torpy ◽  
Hamish Scott ◽  
...  

Abstract Background: Thyrotrophinoma (TSHoma) is rare and knowledge on the genomic landscape of this tumour type is very limited. Aim: To perform whole-exome sequencing (WES) in a population of TSHomas to identify recurrent somatic genetic events Method: WES was performed on paired tumour and germline DNA of 7 patients with TSHomas. Three tissue samples were formalin-fixed paraffin-embedded and 4 fresh frozen tumour samples. Fresh blood samples were also collected from each patient. The average of mean depth of coverage amongst all samples was 129X, and 97% of target bases were covered ≥20X. Results:Four (57%) of the seven patients were male and median age at diagnosis was 52 years. (IQR 46, 60) Six patients (86%) had macroadenomas. Four patients (57%) had central thyrotoxicosis at diagnosis and three patients’ tumour stained positive for TSH on histology examination. Two patients (29%) had growth hormone co-secreting tumours. In total, 69 somatic variants were identified to be of potential interest, averaging 1.4 variants per million base-pair of DNA read. No variants were observed in more than one individual. According to the GTEx database, 9 of 69 genes (DRC3, HDAC5, KDM1A, POLR21, TCF25, THAP7, TTC13, UNC5D, UNC13A) were highly expressed in the pituitary (top 10%). Four of these genes appear to contribute to tumour development via epigenetic pathway. Specifically, three of these genes (HDAC5, KDM1A, THAP7) either interact with or form part of histone deacetylases whilst POLR21 encodes a subunit of RNA polymerase II which is responsible for mRNA synthesis. On the other hand, TCF25 gene is thought to act as transcriptional repressor and UNC5D plays a role in cell-cell adhesion. Large scale copy number variations involving gain or loss of whole chromosome or chromosome (chr) arm were observed in six (86%) tumour samples. Chr 5, 9, 13 and 19 were most commonly affected by chromosomal gains. Deletion of chr 1p was seen in two cases and mutations in KDM1A (p.Glu161fs/c.482_491delAGGAAGAAAA) and ADGRB2 gene (p.Leu1565Gln/c.4694T>A) were found in each of the remaining single copy of chr 1p. ADGRB2 gene is thought to be involved in cell adhesion and angiogenesis inhibition. Copy neutral loss-of-heterozygosity were present in two (29%) of the tumour samples (chr 2 and 12q). However, no somatic mutation was found in these regions. Gene level copy number analysis identified a potential deletion in TTI2 gene which encodes for a regulator in DNA damaging response as well as telomere length regulation. ConclusionOverall, the rate of somatic variant mutations in TSHomas is low, consistent with the relative benign nature of this tumour type. No classical driver mutations were identified by this study however, chromosomal anomalies and epigenetics may play an important part in TSHoma development.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1676-1676
Author(s):  
Alice Marceau-Renaut ◽  
Nicolas Duployez ◽  
Christine Ragu ◽  
Arnaud Petit ◽  
Odile Fenneteau ◽  
...  

Abstract Background. Acute Myeloid Leukemia (AML) is a rare and genetically heterogeneous disease that constitutes 15 to 20% of childhood leukemia. Despite major treatment improvement over the past decades pediatric AML remains a challenging disease with poor outcome compared to acute lymphoid leukemia (ALL). About 50% of these patients relapse after standard intensive chemotherapy. Molecular analysis pointed out the prognostic impact of gene mutation such as FLT3-ITD, NPM1 or CEBPA; and new categories of regulators like epigenetic modifiers. More recently mutational profiling studies revealed distinct molecular subgroups with prognostic significant and stratification in adult AML. Nevertheless cytogenetic and mutational profiles are quite different between adult and pediatric AML. Extensive genomic studies have not been reported to date in pediatric AML. In this context it is of importance to identify additional genetic or molecular abnormalities to better understand leukemogenesis and also to predict outcome and serve as novel therapeutic targets. Methods. We performed a mutational analysis on diagnostic samples from patients enrolled in the French National Multicenter ELAM02 trial. 438 patients with de novo AML (except AML3) were enrolled between march 2005 and December 2011 (median age: 8,22yrs [0-18.61]; median WBC: 15.4G/l [0.4-575]; cytogenetic subgroups: CBF-AML[n=97], NK-AML [n=109], MLL-AML[n=95], MRC2 other[n=77], MRC3 [n=55], failure [n=5]). Diagnostic samples were prospectively collected and 386 of the 438 patients (88%) were studied by next-generation sequencing (Miseq, Illumina with haloplex librairy and ion Proton, thermofischer with ampliseq librairy) including 36 genes frequently reported in myeloid malignancy. Two different technologies of next generation sequencing (NGS) were used, allowing direct validation. FLT3-ITD was detected and quantified by Genescan analysis. Results. We identified 579 driver mutations involving 36 genes or regions in 386 patients (mean 1.5 per case), with at least 1 driver mutation in 291 patients (75%) and 2 or more driver mutations in 44% of samples. The number of mutation identified at diagnosis in cytogenetic subgroup is significantly lower in MLL-AML (0.44 mutation/patient; p<10-4). Mutations involving genes from the tyrosine kinase pathways (i.e RAS, FLT3, KIT, PTPN11, JAK2, MPL, CBL) were the most frequent and represent 56.3% of all aberrations. Among them N-RAS was detected in 26.4% of all cases, followed by FLT3-ITD, KIT and K-RAS in 14.8%, 12.4% and 12.2% respectively. We identified 64 driver mutations in the group of transcription factors (CEBPA, RUNX1, GATA, ETV6), 60 in the combined group of chromatin modifier (ASXL1, EZH2, BCOR) and DNA methylation (DNMT3A, IDH, TET2), 59 in the group of tumor suppressor genes (WT1, PHF6, TP53) 36 mutations in NPM1 gene, and few mutations in cohesion and spliceosome sub-groups. Identified mutations are indicated in the figure according cytogenetic subgroups. Among the 438 patients, 398 (91%) were in complete remission (CR) after two courses (induction and first consolidation), the 5-year overall survival (OS) is 71.5% [65-78] and the 5-year leukemia free survival (LFS) is 56.6% [49.7-63.5]. In univariate analysis, we found that FLT3-ITD, mutations in RUNX1, WT1 and PHF6 were associated with reduced LFS (p=0.0003 for FLT3-ITD, p=0.01 for RUNX1, p=0.02 for WT1 and p=0.025 for PHF6) and reduced OS (p=0.0003 for FLT3-ITD, p=0.0003 for RUNX1, p=0.015 for WT1 and p=0.04 for PHF6). Mutations in NPM1 is associated with an improved 5-yr LFS (p=0.014) and 5-yr OS (p=0.005). Multivariate analysis revealed that FLT3-ITD, RUNX1 and PHF6 were independently associated with an adverse outcome and NPM1 with an improved outcome. Conclusions. We performed an extensive mutational study in de novo pediatric AML enrolled in the ELAM02 trial. We described the genomic landscape of 386 patients and showed the frequency of different mutations according cytogenetics. Interestingly we found mutations in genes involved in constitutional or pre-leukemic disease such as PTPN11, RUNX1, MPL or ETV6. We found that FLT3-ITD, RUNX1 and PHF6 mutations predict poor outcome although NPM1 mutations predict a better outcome. Mutational profiling reveals useful information for risk stratification and therapeutic decisions. Figure Figure. Disclosures Baruchel: Amgen: Consultancy.


2018 ◽  
Vol 20 (suppl_2) ◽  
pp. i181-i182
Author(s):  
Roshal Patel ◽  
Katharine Halligan ◽  
Shakti Ramkissoon ◽  
Jeffrey Ross ◽  
Lauren Weintraub

Sign in / Sign up

Export Citation Format

Share Document