Sa1655 UNSUPERVISED MACHINE LEARNING MODELS FOR POLYP IMAGE DATABASES USED FOR COMPUTER-AIDED DIAGNOSIS

2020 ◽  
Vol 158 (6) ◽  
pp. S-370-S-371
Author(s):  
Dennis Shung ◽  
John Onofrey ◽  
Artur Viana ◽  
Harry R. Aslanian
2021 ◽  
Author(s):  
Larissa Asito ◽  
Hélcio Pereira ◽  
Marcello Nogueira-Barbosa ◽  
Renato Tinós

We propose a computer-aided diagnosis system based on convolutional neural networks (CNNs) for the identification of osteosarcoma on bone radiographs. The CNN should indicate regions of the image that may contain tumors. In order to indicate these regions on the image, we propose to split the image in windows and individually classify them by using a CNN. Techniques for pre-processing, such as window exclusion and labeling, are proposed. Two CNNs are compared in the proposed system. The first one is trained from scratch, while the second one is a pre-trained CNN (VGG16). The CNNs are compared to four machine learning models that use features extracted from the image windows as inputs: multilayer perceptron (MLP), decision tree, random forest, and MLP with feature selection. In the experiments, the best performance was obtained by the pre-trained CNN.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 99 ◽  
Author(s):  
M Kiran Kumar ◽  
M Sreedevi ◽  
Y C. A. Padmanabha Reddy

Machine learning plays a vital role in health care industry. It is very important in Computer Aided Diagnosis. Computer Aided Diagnosis is a quickly developing dynamic region of research in medicinal industry. The current specialists in machine learning guarantee the enhanced precision of discernment and analysis of diseases. The computers are empowered to think by creating knowledge by learning. This procedure enables the computers to self-learn individually without being explicitly programed by the programmer .There are numerous sorts of Machine Learning Techniques and which are utilized to classify the data sets. They are Supervised, Unsupervised and Semi-Supervised, Reinforcement, deep learning algorithms. The principle point of this paper is to give comparative analysis of supervised learning algorithms in medicinal area and few of the techniques utilized as a part of liver disease prediction.


2019 ◽  
Vol 52 (6) ◽  
pp. 387-396 ◽  
Author(s):  
Marcel Koenigkam Santos ◽  
José Raniery Ferreira Júnior ◽  
Danilo Tadao Wada ◽  
Ariane Priscilla Magalhães Tenório ◽  
Marcello Henrique Nogueira Barbosa ◽  
...  

Abstract The discipline of radiology and diagnostic imaging has evolved greatly in recent years. We have observed an exponential increase in the number of exams performed, subspecialization of medical fields, and increases in accuracy of the various imaging methods, making it a challenge for the radiologist to “know everything about all exams and regions”. In addition, imaging exams are no longer only qualitative and diagnostic, providing now quantitative information on disease severity, as well as identifying biomarkers of prognosis and treatment response. In view of this, computer-aided diagnosis systems have been developed with the objective of complementing diagnostic imaging and helping the therapeutic decision-making process. With the advent of artificial intelligence, “big data”, and machine learning, we are moving toward the rapid expansion of the use of these tools in daily life of physicians, making each patient unique, as well as leading radiology toward the concept of multidisciplinary approach and precision medicine. In this article, we will present the main aspects of the computational tools currently available for analysis of images and the principles of such analysis, together with the main terms and concepts involved, as well as examining the impact that the development of artificial intelligence has had on radiology and diagnostic imaging.


Sign in / Sign up

Export Citation Format

Share Document