Suppression of fibroblast growth factor receptor signaling inhibits pancreatic cancer growth in vitro and in vivo

1998 ◽  
Vol 114 (4) ◽  
pp. 798-807 ◽  
Author(s):  
Markus Wagner ◽  
Martha E. Lopez ◽  
Mitch Cahn ◽  
Murray Korc
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Haiyan Tai ◽  
Zhiyong Wu ◽  
Su’an Sun ◽  
Zhigang Zhang ◽  
Congjian Xu

Fibroblast growth factor receptor-like-1 (FGFRL1) has been identified as the fifth fibroblast growth factor receptor. So far, little is known about its biological functions, particularly in cancer development. Here, for the first time, we demonstrated the roles of FGFRL1 in ovarian carcinoma (OC). An array and existing databases were used to investigate the expression profile of FGFRL1 and the relationship between FGFRL1 expression and clinicopathological parameters. FGFRL1 was significantly upregulated in OC patients, and high FGFRL1 expression was correlated with poor prognosis. In vitro cell proliferation, apoptosis and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the role of FGFRL1. Loss of function of FGFRL1 significantly influenced cell proliferation, apoptosis, and migration of OC cells in vitro and tumor growth in vivo. Chromatin immunoprecipitation PCR analysis and microarray hybridization were performed to uncover the mechanism. FGFRL1 expression could be induced by hypoxia through hypoxia-inducible factor 1α, which directly binds to the promoter elements of FGFRL1. FGFRL1 promoted tumor progression by crosstalk with Hedgehog (Hh) signaling. Taken together, FGFRL1 is a potential predictor and plays an important role in tumor growth and Hh signaling which could serve as potential therapeutic targets for the treatment of OC.


2011 ◽  
Vol 436 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Lee M. Wheldon ◽  
Naila Khodabukus ◽  
Susannah J. Patey ◽  
Terence G. Smith ◽  
John K. Heath ◽  
...  

AS (Apert syndrome) is a congenital disease composed of skeletal, visceral and neural abnormalities, caused by dominant-acting mutations in FGFR2 [FGF (fibroblast growth factor) receptor 2]. Multiple FGFR2 splice variants are generated through alternative splicing, including PTC (premature termination codon)-containing transcripts that are normally eliminated via the NMD (nonsense-mediated decay) pathway. We have discovered that a soluble truncated FGFR2 molecule encoded by a PTC-containing transcript is up-regulated and persists in tissues of an AS mouse model. We have termed this IIIa–TM as it arises from aberrant splicing of FGFR2 exon 7 (IIIa) into exon 10 [TM (transmembrane domain)]. IIIa–TM is glycosylated and can modulate the binding of FGF1 to FGFR2 molecules in BIAcore-binding assays. We also show that IIIa–TM can negatively regulate FGF signalling in vitro and in vivo. AS phenotypes are thought to result from gain-of-FGFR2 signalling, but our findings suggest that IIIa–TM can contribute to these through a loss-of-FGFR2 function mechanism. Moreover, our findings raise the interesting possibility that FGFR2 signalling may be a regulator of the NMD pathway.


2008 ◽  
Vol 318 (2) ◽  
pp. 276-288 ◽  
Author(s):  
Haotian Zhao ◽  
Tianyu Yang ◽  
Bhavani P. Madakashira ◽  
Cornelius A. Thiels ◽  
Chad A. Bechtle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document