A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces

2002 ◽  
Vol 45 (9) ◽  
pp. 1945-1949 ◽  
Author(s):  
Y.H Zhou ◽  
Y.J Shen ◽  
Z.M Zhang ◽  
B.K Tsai ◽  
D.P DeWitt
2000 ◽  
Author(s):  
Y. H. Zhou ◽  
Y. J. Shen ◽  
Z. M. Zhang ◽  
B. K. Tsai ◽  
D. P. DeWitt

Abstract This work employs a Monte Carlo method to study the radiative process in a rapid thermal processing (RTP) furnace. A “true” effective emissivity, accounting for the directional optical properties, is defined and predicted in order to determine the wafer temperature from the measured spectral radiance temperature using light-pipe radiation thermometry. The true effective emissivity is the same as the hemispherical effective emissivity for diffuse wafers, in which case the Monte Carlo model gives the same results as the net-radiation method. Deviations exist between the hemispherical effective emissivity and the true effective emissivity for specular wafers because the effective emissivity is directional dependent. This research will help reduce the uncertainty in the temperature measurement for RTP furnaces to meet the future requirements for integrated circuit manufacturing.


1996 ◽  
Vol 429 ◽  
Author(s):  
J. C. Thomas ◽  
D. P. Dewitt

AbstractA Monte Carlo model is developed to simulate transient wafer heating as a function of system parameters in a kaleidoscope- or integrating light-pipe type cavity with square cross-section. Trends in wafer temperature uniformity are examined as a function of length-to-width ratio, cavity width, and the number of heating lamps. The effect on temperature determination by a radiometer placed in the bottom end wall of the cavity is simulated.


Author(s):  
Hakan Erturk ◽  
John R. Howell

Light-pipe radiation thermometers are predominantly used to monitor wafer temperature during rapid thermal processing (RTP) of semiconductors. The processes used in fabrication of semiconductor devices during rapid thermal processing are extremely temperature sensitive and the errors associated with light-pipe measurements are great concerns across the industry. Modeling of the light-pipes has helped in understanding the signal transport process and errors associated with the light pipe measurements. However, due to the smaller size of the light-pipe sensor area with respect to the total system area, full scale modeling of such a system including the light pipe thermometer has not been possible due to the computational demand. In this paper, the reverse Monte Carlo method is used to model the signal transport through a light-pipe thermometer used in a RTP system. The Monte Carlo model considers the spectral and angular dependent optical properties of the chamber and quartz materials. The reverse Monte Carlo model is applied to the full scale instrumented system with characteristics of a RTP system with a quartz light pipe probe and the results are compared against previously published measurements from the same system.


2008 ◽  
Author(s):  
Hakan Erturk ◽  
Ofodike A. Ezekoye ◽  
John R. Howell

Rapid thermal processing (RTP) has been widely used by the semiconductor manufacturing industry. Light-pipe radiation thermometers are the predominant method to monitor the wafer temperature during rapid thermal processing. The errors associated with light-pipe measurements are great concerns across the industry due the extreme temperature sensitivity of the processes used to fabricate semiconductor devices during rapid thermal processing. Modeling of the light-pipes has helped understand the signal transport process and errors associated with the light pipe measurements. However, due to the smaller size of the light-pipe sensor area with respect to the total system area full scale modeling of such a system including the light pipe thermometer have not been possible due to the computational demand. In this paper, a reverse Monte Carlo method is developed to model the signal transport through a light-pipe thermometer used in a RTP system. The Monte Carlo model considers the spectral and angle dependent optical properties of the chamber and quartz materials. The reverse Monte Carlo model is applied to a simpler system with a quartz light pipe probe for verification against a model developed using a forward Monte Carlo method.


1998 ◽  
Vol 525 ◽  
Author(s):  
A. R. Abramson ◽  
H. Tadal ◽  
P. Nieva ◽  
P. Zavracky ◽  
I. N. Miaoulis ◽  
...  

ABSTRACTThe radiative properties of a silicon wafer undergoing Rapid Thermal Processing (RTP) are contingent upon the doping level of the silicon substrate and film structure on the wafer, and fluctuate drastically with temperature and wavelength. For a lightly doped substrate, partial transparency effects must be considered that significantly affect absorption characteristics. Band gap, free carrier, and lattice absorption are the dominant absorption mechanisms and either individually or in concert have considerable effect on the overall absorption coefficient of the silicon wafer. At high doping levels, partial transparency effects dissipate, and the substrate may be considered optically thick. A numerical model has been developed to examine partial transparency effects, and to compare lightly doped (partially transparent) and heavily doped (opaque) silicon wafers with a multilayer film structure during RTP.


Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 79-86
Author(s):  
J. A. Solovjov ◽  
V. A. Pilipenko ◽  
V. P. Yakovlev

The present work is devoted to determination of the dependence of the heating temperature of the silicon wafer on the lamps power and the heating time during rapid thermal processing using “UBTO 1801” unit by irradiating the wafer backside with an incoherent flow of constant density light. As a result, a mathematical model of silicon wafer temperature variation was developed on the basis of the equation of nonstationary thermal conductivity and known temperature dependencies of the thermophysical properties of silicon and the emissivity of aluminum and silver applied to the planar surface of the silicon wafer. For experimental determination of the numerical parameters of the mathematical model, silicon wafers were heated with light single pulse of constant power to the temperature of one of three phase transitions such as aluminum-silicon eutectic formation, aluminum melting and silver melting. The time of phase transition formation on the wafer surface during rapid thermal processing was fixed by pyrometric method. In accordance with the developed mathematical model, we determined the conversion coefficient of the lamps electric power to the light flux power density with the numerical value of 5.16∙10-3 cm-2 . Increasing the lamps power from 690 to 2740 W leads to an increase in the silicon wafer temperature during rapid thermal processing from 550°to 930°K, respectively. With that, the wafer temperature prediction error in compliance with developed mathematical model makes less than 2.3 %. The work results can be used when developing new procedures of rapid thermal processing for silicon wafers.


2012 ◽  
Vol 93 ◽  
pp. 67-73 ◽  
Author(s):  
V.I. Rudakov ◽  
V.V. Ovcharov ◽  
A.L. Kurenya ◽  
V.P. Prigara

1994 ◽  
Vol 342 ◽  
Author(s):  
J. Vernon Cole ◽  
Karson L. Knutson ◽  
Klavs F. Jensen

ABSTRACTWe present a general purpose Monte Carlo method for the simulation of radiation heat transfer in rapid thermal processing (RTP) chambers. Three-dimensional mesh generation software is used to discretize the surfaces within the system, allowing the simulation of realistic chamber and reflector designs. An adaptive subdivision of the chamber geometry reduces the number of raysurface intersections which must be computed. The method models internal reflection, absorption, and transmission within participating media, and includes wavelength, temperature, and material dependent optical properties. Radiation heat transfer simulations are used to examine a reflector assembly, and to test the assumptions of optical wafer temperature measurement techniques.


Sign in / Sign up

Export Citation Format

Share Document