Modelling the behaviour of stratified liquid natural gas in storage tanks: a study of the rollover phenomenon

1997 ◽  
Vol 40 (8) ◽  
pp. 1875-1884 ◽  
Author(s):  
S. Bates ◽  
D.S. Morrison
2021 ◽  
Author(s):  
Yinbin Lu ◽  
Chenwei Liang

In the filling and transportation processes of liquefied natural gas (LNG), the safety of LNG storage tanks is compromised because of rollover phenomenon. As such, the rollover factors of LNG in a storage tank should be identified to prevent or weaken the rollover intensity of LNG. In this study, the rollover behavior of LNG in a storage tank is numerically simulated. The density of the two layers in a LNG storage tank is related to temperature in our numerical model. It is found that the greater the significant initial density difference (range of 1-12 kg·m-3) is, the more obvious the LNG rollover will be. A density difference of 7.5 kg·m-3 is found as the critical density difference in the present work. When the initial density difference exceeds the critical density difference, the LNG rollover coefficients increase dramatically. Moreover, an LNG rollover model with two daughter models is proposed, which are divided by the critical initial density difference, i.e., a cubic relationship between rollover coefficients and the initial density difference when the density difference is less than 7.5 kg·m-3 and secondly, a linear relationship between the rollover coefficient and the double exponential functions when the density difference is larger than 7.5 kg·m-3.


Author(s):  
Jeom Kee Paik ◽  
Sang Eui Lee ◽  
Bong Ju Kim ◽  
Jung Kwan Seo ◽  
Yeon Chul Ha ◽  
...  

The aim of this study was to develop a new method for determining nominal values for sloshing loads in the design of storage tanks in LNG FPSO (liquid natural gas, floating production, storage and offloading units). Details of the procedure are presented in a flow chart showing the key sub-tasks. The applicability of the method is demonstrated using an example of a hypothetical LNG FPSO operating in a natural gas site off a hypothetical oceanic region. It is concluded that the developed method is useful for determining the design sloshing loads of storage tanks in ship-shaped offshore LNG installations in combination with virtual metocean data and operational conditions.


1990 ◽  
Vol 9 (1-4) ◽  
pp. 175-197
Author(s):  
C. Turnell ◽  
N.W. Murray ◽  
I.D. Bennetts

1994 ◽  
Vol 10 (03) ◽  
pp. 174-183
Author(s):  
John W. Boylston ◽  
Paul J. Riley ◽  
Gary W. Van Tassel

The Liquid natural gas (LNG) industry went from a projected boom in the 1970's to a contracted industry in the 1980's, when many ships were either permanently or temporarily laid up. In the 1990s, many laid-up LNG carriers are being reactivated after as many as 12 years in lay-up. While the capital cost of an LNG carrier should dictate maximum preservation of the asset, the LNG industry is not immune to having to make hard economic decisions during slack times. In this paper, the authors present specific alternate lay-up procedures, together with the relative costs of these alternatives. LNG carriers are steam vessels, as are many of the vessels in the Ready Reserve Fleet (RRF). However, many of the conclusions reached can also be applied to motor vessels, and as such could be of interest to operators and shipyards in all phases of the RRF program. The subjects of dehumidification, inert gas plants, ballast tank coatings and drydocking, among others, are discussed.


2013 ◽  
Vol 27 ◽  
pp. 37-41
Author(s):  
Palash K Saha ◽  
Mahbubur Rahman

This paper demonstrates a method of recovering the low pressure vapor from the condensate tanks in the Bibiyana gas field. This method uses a gas ejector as a device to compress the low pressure natural gas from the condensate tanks to an intermediate pressure, which would then be fed into the intermediated stage of the existing vapor recovery unit. Thus the natural gas will be saved which would have been otherwise flared. The amount of tank vapor is estimated by different methods, which shows a significant amount of gas is now being flared. Flaring of gas is a problem which entails both economic loss and environmental concerns. It is estimated that, on the average 190 MSCFD tank vapor can be recovered using the proposed method involving a gas ejector. Thus yearly saving would be about 68 MMSCF of natural gas. The equivalent heat energy saving is about 74.55X109 BTU. In terms of greenhouse gas emissions, this project will reduce about 1,112 tons of CO2 emissions per year in the gas plant locality. DOI: http://dx.doi.org/10.3329/jce.v27i1.15856 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 1, June 2012: 37-41


2020 ◽  
Vol 14 ◽  
pp. 177-195
Author(s):  
Michał Piekarski

Security of energy supplies to Poland by sea The article describes issue of security of delivery of energy sources – Liquid Natural Gas (LNG) and oil to Poland by the maritime routes. Poland currently uses one LNG terminal and one major oil import terminal, and further developments – Baltic Pipe pipeline from North Sea and another LNG terminal are planned. Security of those routes depends on various factors from security of terminals, safe passage of tankers and required using multiple elements, including security and law enforcement services, naval forces and air defence systems to provide reliable delivery of oil and LNG in case of peace, crisis and war.


Sign in / Sign up

Export Citation Format

Share Document