Investigation of the coupled heat transfer, fluid flow and solute transport during the strip casting process

1997 ◽  
Vol 40 (12) ◽  
pp. 2949-2961 ◽  
Author(s):  
A.V. Kuznetsov
2009 ◽  
Vol 22 (5) ◽  
pp. 345-352 ◽  
Author(s):  
Yongsheng WANG ◽  
Chenxi JI ◽  
Jiongming ZHANG ◽  
Xinhua WANG ◽  
Wanjun WANG

2010 ◽  
Vol 132 (11) ◽  
Author(s):  
A. Arikoglu ◽  
G. Komurgoz ◽  
I. Ozkol ◽  
A. Y. Gunes

The present work examines the effects of temperature and velocity jump conditions on heat transfer, fluid flow, and entropy generation. As the physical model, the axially symmetrical steady flow of a Newtonian ambient fluid over a single rotating disk is chosen. The related nonlinear governing equations for flow and thermal fields are reduced to ordinary differential equations by applying so-called classical approach, which was first introduced by von Karman. Instead of a numerical method, a recently developed popular semi numerical-analytical technique; differential transform method is employed to solve the reduced governing equations under the assumptions of velocity and thermal jump conditions on the disk surface. The combined effects of the velocity slip and temperature jump on the thermal and flow fields are investigated in great detail for different values of the nondimensional field parameters. In order to evaluate the efficiency of such rotating fluidic system, the entropy generation equation is derived and nondimensionalized. Additionally, special attention has been given to entropy generation, its characteristic and dependency on various parameters, i.e., group parameter, Kn and Re numbers, etc. It is observed that thermal and velocity jump strongly reduce the magnitude of entropy generation throughout the flow domain. As a result, the efficiency of the related physical system increases. A noticeable objective of this study is to give an open form solution of nonlinear field equations. The reduced recurative form of the governing equations presented gives the reader an opportunity to see the solution in open series form.


Author(s):  
Müjdat Firat

The present study has been performed on heat transfer, fluid flow and formation of emissions in a diesel engine by different engine parameters. The analysis aims at an investigation of flow field, heat transfer, combustion pressure and formation of emission by means of numerical simulation which is using as parameter; hole number of injector and crank angle. Numerical simulations are performed using the AVL-FIRE commercial software depending on the crank angle. This software is successfully used in internal combustion engine applications, and its validity has been accepted. In this paper, k-zeta-f is preferred as turbulence model and SIMPLE/PISO used as algorithms. Thus, results are presented with pressure traces, temperature curves and NOx and soot levels for engine operating conditions. In addition, the relationship between the spray behaviors and combustion characteristics including NOx emissions, soot emissions, combustion pressure and temperature were illustrated through this analysis.


2020 ◽  
Vol 59 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Yanzhao Luo ◽  
Chenxi Ji ◽  
Wenyuan He ◽  
Yanqiang Liu ◽  
Xiaoshan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document