scholarly journals Activity corrections for ionic equilibria in aqueous solutions

1980 ◽  
Vol 58 (12) ◽  
pp. 1253-1257 ◽  
Author(s):  
Mian S. Sun ◽  
Donald K. Harriss ◽  
Vincent R. Magnuson

Activity corrections for ionic equilibria in aqueous solutions at 25 °C and ionic strengths up to 0.5 have been investigated. An empirical formula for activity corrections was generated by statistically fitting stability constant data for approximately 540 complexes, for which both thermodynamic and concentration stability constants were known, to a modified Debye – Hückel relationship. The general formula is[Formula: see text]χ > 0, where Δ log K is the difference in the logarithms of the stability constants at infinite dilution and finite I (I ≤ 0.5), and χ is an even integer dependent only on the stoichiometry and charge of the ions involved. Activity correction formulae for ionic equilibria involving classes of ligands (amino acid, inorganic, amine, and organic acid) also were developed. The general formula predicts stability constant corrections within 0.1 log unit for 87 % of the data used at ionic strength 0.1 and 64 % of the data at ionic strength 0.5. In addition, single ion activity coefficients as a function of ionic strength, 0 < I ≤ 0.5, are presented.

1977 ◽  
Vol 55 (9) ◽  
pp. 928-934 ◽  
Author(s):  
Robert J. Maloney ◽  
David T. Dennis

A divalent cation electrode was used to measure the stability constants (association constants) for the magnesium and manganese complexes of the substrates for the NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) from pea stems. At an ionic strength of 26.5 mM and at pH 7.4 the stability constants for the Mg2+–isocitrate and Mg2+–NADP+ complexes were 0.85 ± 0.2 and 0.43 ± 0.04 mM−1 respectively and for the Mn2+–isocitrate and Mn2+–NADP+ complexes they were 1.25 ± 0.07 and 0.75 ± 0.09 mM−1 respectively. At the same ionic strength but at pH 6.0 the Mg2+–NADPH and Mn2+–NADPH complexes had stability constants of 0.95 ± 0.23 and 1.79 ± 0.34 mM−1 respectively. Oxalosuccinate and α-ketoglutarate do not form measureable complexes under these conditions. Saturation kinetics of the enzyme with respect to isocitrate and metal ions are consistent with the metal–isocitrate complex being the substrate for the enzyme. NADP+ binds to the enzyme in the free form. Saturation kinetics of NADPH and Mn2+ indicate that the metal–NADPH complex is the substrate in the reverse reaction. In contrast the pig heart enzyme appears to bind free NADPH and Mn2+. A scheme for the reaction mechanism is presented and the difference between the reversibility of the NAD+ and NADP+ enzyme is discussed in relation to the stability of the NADH and NADPH metal complexes.


1967 ◽  
Vol 45 (14) ◽  
pp. 1643-1647 ◽  
Author(s):  
P. G. Manning

Stepwise stability constants have been determined for the 1:1 and 1:2 Eu3+:mandelate− and Eu3+:tartronate2− complexes in water. Measurements were made at low ionic strength and the temperature was 25 °C. The solvent-extraction–radiotracer method was used.For the mandelate system at an ionic strength of 0.104, K1 = 5.0 × 102, K2 = 1.58 × 102, and K1:K2 = 3.1. The K1:K2 ratios suggest monodentate ligandcy.The stepwise stability constants for the two stages of tartronate ion association are: K1 = 7.1 ( ± 15%) × 104 and K1K2 = 4.2 ( ± 5%) × 108. The magnitudes of the stability constants suggest that tartronate is a tridentate ligand. The stability constant ratios are discussed with reference to the ratios for piperidinedicarboxylate and iminodiacetate complexes.


1979 ◽  
Vol 44 (8) ◽  
pp. 2460-2464 ◽  
Author(s):  
Jana Podlahová

Anions of the phosphineacetic acids of the general formula (C6H5)3-nP(CH2COOH)n (n = 1-3) form with the cations Mn2+, Co2+, Zn2+, Cd2+, and Pb2+ in aqueous solutions complexes with the ratio M : L = 1 : 1 and in some cases also 1 : 2. In addition, the ligand with n = 3 exhibits the formation of the protonized complexes MHL. The stability constants of the complexes were calculated by statistical processing of the pH-metric titration curves, and the ligands were found to act as the O-donors to Mn2+ and Zn2+, and as PO (n = 1) and POO (n = 2, 3) donors to the other cations.


1980 ◽  
Vol 45 (4) ◽  
pp. 1221-1226 ◽  
Author(s):  
Oldřich Navrátil ◽  
Pavel Linhart

The partition of 1-phenyl-3-methyl-4-benzoylpyrazolone-5 (HA) between aqueous solutions of HClO4 and NaClO4, ionic strength 0.1, and Freon 113 or its 2 : 1 mixture with benzene was studied. The logarithms of the HA distribution constants are 2.84 ± 0.10 and 3.39 ± 0.15 for the two organic phases, respectively. The extraction curves of cerium(III) and europium(III) revealed that in dependence on the pH of the aqueous phase, the metals are transferred into the organic phase in the form of the MA3 complexes (M = Ce, Eu). The stability constants of the complexes MAn in the aqueous phase were determined along with their distribution and extraction constants. For cobalt, zinc, and hafnium, a part of the extraction curves could only be studied, only the extraction constants were therefore determined. The sparing solubility of HA in Freon 113 can be circumvented by using a Freon-benzene mixture 2 : 1, which is still practically incombustible.


1966 ◽  
Vol 44 (24) ◽  
pp. 3057-3062 ◽  
Author(s):  
P. G. Manning

The partitioning of radiotracer 152/151Eu between aqueous sodium oxalate (Na2L) solutions and toluene solutions of thenoyltrifluoroacetone (HTTA) has been studied as a function of the oxalate concentration. The pH of the aqueous phase was controlled by means of sodium acetate – acetic acid mixtures and the ionic strength (I) by NaCl or NaClO4.At low ionic strengths (~0.05) and [L] ~10−4 M EuL+ formed, but at I = 0.95 and [L] ~10−3 M EuL2− also formed. Stability constants for the 1:1 and 1:2 (metal:ligand) complexes are reported.The magnitudes of the stepwise stability constant ratios are discussed.


2011 ◽  
Vol 8 (4) ◽  
pp. 1911-1915
Author(s):  
N. G. Nadkarni ◽  
K. V. Mangaonkar

Binary and ternary complexes of the type M-Y and M-X-Y [M = Mn(II), Ni(II), Cu(II) and Zn(II); X = 5-bromosalicylidene-4-methoxyaniline and Y = salicylidene-2,3-dimethylaniline] have been examined pH-metrically at 27±0.5°C and at constant ionic strength, μ = 0.1 M (KCl) in 75 : 25(v/v) 1,4-dioxne-water medium. The stability constants for binary (M-Y) and ternary (M-X-Y) systems were calculated.


1963 ◽  
Vol 41 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Vladimir Palaty

The stability constant of the sodium chelate of EDTA was determined by means of a sodium-sensitive glass electrode. It appears that a hydrogen chelate of the formula NaHY2− is formed in the neutral solution of EDTA, but is very unstable. The stability constants, pKNaY = −2.61 and pKNaHY = 0.03, are comparable to the value obtained by Schwarzenbach and Ackermann under different experimental conditions by a less sensitive method.


1987 ◽  
Vol 33 (3) ◽  
pp. 405-407 ◽  
Author(s):  
R B Martin ◽  
J Savory ◽  
S Brown ◽  
R L Bertholf ◽  
M R Wills

Abstract An understanding of Al3+-induced diseases requires identification of the blood carrier of Al3+ to the tissues where Al3+ exerts a toxic action. Quantitative studies demonstrate that the protein transferrin (iron-free) is the strongest Al3+ binder in blood plasma. Under plasma conditions of pH 7.4 and [HCO3-]27 mmol/L, the successive stability constant values for Al3+ binding to transferrin are log K1 = 12.9 and log K2 = 12.3. When the concentration of total Al3+ in plasma is 1 mumol/L, the free Al3+ concentration permitted by transferrin is 10(-14.6) mol/L, less than that allowed by insoluble Al(OH)3, by Al(OH)2H2PO4, or by complexing with citrate. Thus transferrin is the ultimate carrier of Al3+ in the blood. We also used intensity changes produced by metal ion binding to determine the stability constants for Fe3+ binding to transferrin: log K1 = 22.7 and log K2 = 22.1. These constants agree closely with a revision of the reported values obtained by equilibrium dialysis. By comparison with Fe3+ binding, the Al3+ stability constants are weaker than expected; this suggests that the significantly smaller Al3+ ions cannot coordinate to all the transferrin donor atoms available to Fe3+.


2003 ◽  
Vol 68 (10) ◽  
pp. 729-749 ◽  
Author(s):  
H.S. Seleem ◽  
B.A. El-Shetary ◽  
S.M.E. Khalil ◽  
M. Shebl

Three Schiff-base hydrazones (ONN ? donors) were prepared by condensation of 2-amino-4-hydrazino-6-methylpyrimidine with 2-hydroxyacetophenone 2-methoxybenzaldehyde and diacetyl to yield 2-OHAHP, 2-OMeBHPand DHP respectively. The structures of these ligands were elucidated by elemental analysis, UV, IR, 1H-NMR and mass spectra. The metal?ligand stability constants of Mn2+, Fe3+,Co2+,Ni2+,Cu2+, Zn2+,Cd2+,UO22+ and Th4+ chelates were determined potentiometrically in two different media (75%(v/v) dioxane?water and ethanol?water) at 283, 293, 303 and 313 K at an ionic strength of 0.05 M (KNO3). The thermodynamic parameters of the 1:1 and 1:2 complexes were evaluated and are discussed. The dissociation constants of 2-OHAHP, 2-OMeBHP and DHPligands and the stability constants of Co2+, Ni2 and Cu2+ with 2-OHAHP were determined spectrophotometrically in 75 % (v/v) dioxane?water.


Sign in / Sign up

Export Citation Format

Share Document