scholarly journals Activation unblock of Class-I antiarrhythmic drugs studied by using Vmax of action potential in single ventricular myocytes.

1991 ◽  
Vol 55 ◽  
pp. 177
Author(s):  
Itsuo Kodama ◽  
Kaichiro Kamiya ◽  
Junji Toyama
2000 ◽  
Vol 78 (3) ◽  
pp. 208-216 ◽  
Author(s):  
Jean-François Aupetit ◽  
Bernard Bui-Xuan ◽  
Idriss Kioueh ◽  
Joseph Loufoua ◽  
Dominique Frassati ◽  
...  

It is known that class I antiarrhythmic drugs lose their antifibrillatory activity with severe ischaemia, whereas class IV antiarrhythmic drugs acquire such activity. Tachycardia, which is also a depolarizing factor, has recently been shown to give rise to an alteration of ion transmembrane exchanges which is particularly marked in the case of calcium. This leads one to wonder if the change in antifibrillatory activity of antiarrhythmic drugs caused by ischaemia depends on the same process. The change in antifibrillatory activity was studied in normal conditions ranging to those of severe ischaemia with a class I antiarrhythmic drug, flecainide (1.00 mg·kg-1 plus 0.04 mg·kg-1·min-1), a sodium channel blocker, and a class IV antiarrhythmic drug, verapamil (50 µg·kg-1 plus 2 µg·kg-1·min-1), a calcium channel blocker. The experiments were performed in anaesthetized, open-chest pigs. The resulting blockade of each of these channels was assessed at the end of ischaemic periods of increasing duration (30, 60, 120, 180, 300, and 420 s) by determining the ventricular fibrillation threshold (VFT). VFT was determined by means of trains of diastolic stimuli of 100 ms duration delivered by a subepicardial electrode introduced into the myocardium (heart rate 180 beats per min). Ischaemia was induced by completely occluding the left anterior descending coronary artery. The monophasic action potential was recorded concurrently for the measurement of ventricular conduction time (VCT). The monophasic action potential duration (MAPD) varied with membrane polarization of the fibres. The blockade of sodium channels by flecainide, which normally raises VFT (7.0 ± 0.4 to 13.8 ± 0.8 mA, p < 0.001) and lengthens VCT (28 ± 3 to 44 ± 5 ms, p < 0.001), lost its effects in the course of ischaemia. This resulted in decreased counteraction of the ischaemia-induced fall of VFT and decreased aggravation of the ischaemia-induced lengthening of VCT. The blockade of calcium channels, which normally does not alter VFT (between 7.2 ± 0.6 and 8.4 ± 0.7 mA, n.s.) or VCT (between 30 ± 2 and 34 ± 3 ms, n.s.), slowed the ischaemia-induced fall of VFT. VFT required more time to reach 0 mA, thus delaying the onset of fibrillation. Membrane depolarization itself was opposed as the shortening of MAPD and the lengthening of VCT were also delayed. Consequently there is a progressive decrease in the role played by sodium channels during ischaemia in the rhythmic systolic depolarization of the ventricular fibres. This reduces or suppresses the ability of sodium channel blockers to act on excitability or conduction, and increases the role of calcium channel blockers in attenuating ischaemia-induced disorders.Key words: pigs, ion transmembrane exchanges, myocardial ischaemia, sodium channel, calcium channel.


1986 ◽  
Vol 250 (5) ◽  
pp. H769-H777
Author(s):  
G. A. West ◽  
G. Isenberg ◽  
L. Belardinelli

Adenosine is known to antagonize the effects of catecholamine stimulation in atrial and ventricular tissue; however, its mechanism of action is unknown. Forskolin is an inotropic agent that causes an increase in cyclic AMP (cAMP) levels independent of receptor stimulation. We sought to test whether adenosine could attenuate the effects of forskolin in isolated perfused guinea pig hearts and isolated single ventricular myocytes. In isolated perfused hearts (n = 18), forskolin caused a concentration-dependent increase in left ventricular pressure and dP/dt. Adenosine (5 microM) antagonized the forskolin (0.35 microM)-induced increase in left ventricular pressure and dP/dt by 96 +/- 2 and 92 +/- 4% (means +/- SE), respectively. In contrast, in four hearts, adenosine was ineffective in attenuating the inotropic response to dibutyryl cAMP. In isolated ventricular myocytes (n = 10) 150 nM forskolin caused a significant increase in action potential duration and plateau. In voltage-clamp experiments (n = 8), 150 nM forskolin caused a 39 +/- 3% increase in the calcium current, which was antagonized by adenosine (50 microM) by 80%. Forskolin also caused an increase in contractility, as estimated by sarcomere shortening of the cell. Adenosine, and its analogue N6-R-phenylisopropyladenosine (L-PIA), antagonized the effects of 150 nM forskolin on the action potential and on sarcomere shortening. Dibutyryl cAMP had similar effects as forskolin, but they were not antagonized by adenosine. At higher concentrations of forskolin, above 300 nM, delayed after depolarizations and sustained spontaneous activity occurred that could be abolished by L-PIA. Forskolin caused a concentration-dependent increase in cAMP, measured in isolated ventricular myocytes.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 258 (4) ◽  
pp. H931-H938 ◽  
Author(s):  
J. Meszaros ◽  
A. J. Pappano

In isolated guinea pig ventricular myocytes, L-palmitoylcarnitine (L-PC) produced concentration- and time-dependent changes of resting potential (RP) and action potential duration at 50% repolarization (APD50). At 10(-8) to 10(-6) M, L-PC increased APD50 without changing RP. At 10(-5) M, the amphiphile initially increased (0-10 min) and eventually decreased (greater than 10 min) APD50; the membrane depolarized when APD50 decreased. Additionally, transient depolarizations (TDs) were consistently induced in 10(-5) M L-PC within 10 min, and TD amplitude progressively increased with continued exposure to L-PC. The TDs induced in L-PC were augmented by membrane depolarization, elevated extracellular Ca2+ concentration ([Ca2+]o), and increased number of stimuli. Elevated [Ca2+]o or neuraminidase treatment also allowed TDs. In neuraminidase, the changes of RP, APD50, and TD amplitude were qualitatively similar to those seen with L-PC. These results are consistent with the hypothesis that 10(-5) M L-PC causes intracellular Ca2+ overload. The blockade of L-PC and neuraminidase-induced TDs by ryanodine is consistent with the intracellular Ca2+ overload hypothesis.


Sign in / Sign up

Export Citation Format

Share Document