ventricular tissue
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 39)

H-INDEX

35
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Alexa Corker ◽  
Lily S. Neff ◽  
Philip Broughton ◽  
Amy D. Bradshaw ◽  
Kristine Y. DeLeon-Pennell

During homeostasis, immune cells perform daily housekeeping functions to maintain heart health by acting as sentinels for tissue damage and foreign particles. Resident immune cells compose 5% of the cellular population in healthy human ventricular tissue. In response to injury, there is an increase in inflammation within the heart due to the influx of immune cells. Some of the most common immune cells recruited to the heart are macrophages, dendritic cells, neutrophils, and T-cells. In this review, we will discuss what is known about cardiac immune cell heterogeneity during homeostasis, how these cell populations change in response to a pathology such as myocardial infarction or pressure overload, and what stimuli are regulating these processes. In addition, we will summarize technologies used to evaluate cell heterogeneity in models of cardiovascular disease.


Physics Open ◽  
2021 ◽  
Vol 9 ◽  
pp. 100090
Author(s):  
K.V. Rajany ◽  
Rupamanjari Majumder ◽  
Alok Ranjan Nayak ◽  
Rahul Pandit

Author(s):  
Daniel Soetkamp ◽  
Romain Gallet ◽  
Sarah J Parker ◽  
Ronald Holewinski ◽  
Vidya Venkatraman ◽  
...  

Rationale: Phosphorylation of sarcomeric proteins has been implicated in heart failure with preserved ejection fraction (HFpEF); such changes may contribute to diastolic dysfunction by altering contractility, cardiac stiffness, Ca 2+ -sensitivity and mechanosensing. Treatment with cardiosphere-derived cells (CDCs) restores normal diastolic function, attenuates fibrosis and inflammation, and improves survival in a rat HFpEF model. Objective: Phosphorylation changes that underlie HFpEF and those reversed by CDC therapy, with a focus on the sarcomeric subproteome were analyzed. Methods and Results: Dahl salt-sensitive rats fed a high-salt diet, with echocardiographically-verified diastolic dysfunction, were randomly assigned to either intracoronary CDCs or placebo. Dahl salt-sensitive rats receiving low salt diet served as controls. Protein, and phosphorylated Ser, Thr and Tyr residues from left ventricular tissue, were quantified by mass spectrometry. HFpEF hearts exhibited extensive hyperphosphorylation with 98% of the 529 significantly changed phospho-sites increased compared to control. Of those 39% were located within the sarcomeric subproteome, with a large group of proteins located or associated with the Z-disk. CDC treatment partially reverted the hyperphosphorylation, with 85% of the significantly altered 76 residues hypophosphorylated. Bioinformatic upstream analysis of the differentially phosphorylated protein residues revealed PKC as the dominant putative regulatory kinase. PKC isoform analysis indicated increases in PKC α, β and δ concentration, whereas CDC treatment led to a reversion of PKCβ. Use of PKC isoform specific inhibition and overexpression of various PKC isoforms strongly suggests PKCβ is the dominant kinase involved in hyperphosphorylation in HFpEF and is altered with CDC treatment. Conclusions: Increased protein phosphorylation at the Z-disk is associated with diastolic dysfunction, with PKC isoforms driving most quantified phosphorylation changes. Because CDCs reverse the key abnormalities in HFpEF and selectively reverse PKCβ upregulation, PKCβ merits being classified as a potential therapeutic target in HFpEF, a disease notoriously refractory to medical intervention,


2021 ◽  
Vol 12 ◽  
Author(s):  
Aparna C. Sankarankutty ◽  
Joachim Greiner ◽  
Jean Bragard ◽  
Joseph R. Visker ◽  
Thirupura S. Shankar ◽  
...  

With an estimated 64.3 million cases worldwide, heart failure (HF) imposes an enormous burden on healthcare systems. Sudden death from arrhythmia is the major cause of mortality in HF patients. Computational modeling of the failing heart provides insights into mechanisms of arrhythmogenesis, risk stratification of patients, and clinical treatment. However, the lack of a clinically informed approach to model cardiac tissues in HF hinders progress in developing patient-specific strategies. Here, we provide a microscopy-based foundation for modeling conduction in HF tissues. We acquired 2D images of left ventricular tissues from HF patients (n = 16) and donors (n = 5). The composition and heterogeneity of fibrosis were quantified at a sub-micrometer resolution over an area of 1 mm2. From the images, we constructed computational bidomain models of tissue electrophysiology. We computed local upstroke velocities of the membrane voltage and anisotropic conduction velocities (CV). The non-myocyte volume fraction was higher in HF than donors (39.68 ± 14.23 vs. 22.09 ± 2.72%, p < 0.01), and higher in ischemic (IC) than nonischemic (NIC) cardiomyopathy (47.2 ± 16.18 vs. 32.16 ± 6.55%, p < 0.05). The heterogeneity of fibrosis within each subject was highest for IC (27.1 ± 6.03%) and lowest for donors (7.47 ± 1.37%) with NIC (15.69 ± 5.76%) in between. K-means clustering of this heterogeneity discriminated IC and NIC with an accuracy of 81.25%. The heterogeneity in CV increased from donor to NIC to IC tissues. CV decreased with increasing fibrosis for longitudinal (R2 = 0.28, p < 0.05) and transverse conduction (R2 = 0.46, p < 0.01). The tilt angle of the CV vectors increased 2.1° for longitudinal and 0.91° for transverse conduction per 1% increase in fibrosis. Our study suggests that conduction fundamentally differs in the two etiologies due to the characteristics of fibrosis. Our study highlights the importance of the etiology-specific modeling of HF tissues and integration of medical history into electrophysiology models for personalized risk stratification and treatment planning.


2021 ◽  
Author(s):  
Srinivasan Jayaraman ◽  
Ponnuraj Kirthi Priya

A high fidelity transmural anisotropic ventricular tissue model consisting of endocardial, mid myocardial, and epicardial myocytes were configured to investigate drug interaction, such as Hydroxychloroquine (HCQ), under hypoxia conditions without and with pro-arrhythmic comorbidity like hypokalemia in (a) ventricular tissue b) its arrhythmogenesis for different dosages and (b) two different pacing sequences (Normal and tachycardiac). In-silico ventricular modeling indicates HCQ has an insignificant effect on hypoxia with and without comorbidities, except in the combination of mild hypoxia with moderate hypokalemia condition and severe hypoxia with mild hypokalemia where it initiated a re-entrant arrhythmia. Secondly, incorporating drug dosage variations indicates the 10 μM HCQ created PVCs for all settings except in severe hypoxia conditions where re-entrant arrhythmia occurred. In addition to the dosage of HCQ utilized for treatment, the pacing protocol also influences the appearance of re-entrant arrhythmia only for severe hypoxia with 10 μM HCQ dosage alone. For all other conditions, including tachycardiac pacing protocol, no arrhythmia occurred. These findings infer that the arrhythmic fatality rate due to HCQ treatment for hypoxia can be effectively alleviated by subtly altering or personalizing the dosage of HCQ and aid in the treatment of hypoxia-induced symptoms caused by COVID.


Author(s):  
Fatma Alatrag ◽  
Matthew Amoni ◽  
Roisin Kelly-Laubscher ◽  
Asfree Gwanyanya

Fingolimod (FTY720) inhibits Ca<sup>2+</sup>-permeable, Mg<sup>2+</sup>-sensitive channels called transient receptor potential melastatin 7 (TRPM7), but its effects on Ca<sup>2+</sup> paradox (CP)-induced myocardial damage have not been evaluated. We studied the effect of FTY720 on CP-induced myocardial damage, and used other TRPM7 channel inhibitors nordihydroguaiaretic acid (NDGA) and Mg<sup>2+</sup> to test if any effect of FTY720 was via TRPM7 inhibition. Langendorff-perfused Wistar rat hearts were treated with FTY720 or NDGA and subjected to a CP protocol consisting of Ca<sup>2+</sup> depletion followed by Ca<sup>2+</sup> repletion. Hearts of rats pre-treated with MgSO<sub>4</sub> were also subjected to CP. Hemodynamic parameters were measured using an intraventricular balloon, and myocardial infarct size was quantified using triphenyltetrazolium chloride stain. TRPM7 proteins in ventricular tissue were detected using immunoblot analysis. FTY720, but not NDGA, decreased CP-induced infarct size. Both FTY720 and NDGA minimized the CP-induced elevation of left ventricular end-diastolic pressure, but only FTY720 ultimately improved ventricular developed pressure. Mg<sup>2+</sup> pre-treatment had effect neither on CP-induced infarct size, hemodynamic parameters during CP, nor the level TRPM7 protein expression in ventricular tissue. Overall, FTY720 attenuated CP-induced myocardial damage, with potential therapeutic implications on Ca<sup>2+</sup>-mediated cardiotoxicity. However, the cardioprotective mechanism of FTY720 seems to be unrelated to TRPM7 channel modulation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Afnan Saleh Al-Menhali ◽  
Cali Anderson ◽  
Alexander V. Gourine ◽  
Andrey Y. Abramov ◽  
Alicia D’Souza ◽  
...  

Regular exercise has many health benefits, among which is a significant reduction of cardiovascular risk. Although many beneficial effects of exercise are well described, the exact mechanisms by which exercise confers cardiovascular benefits are yet to be fully understood. In the current study, we have used high resolution mass spectrometry to determine the proteomic responses of the heart to exercise training in mice. The impact of exercise-induced oxidative stress on modifications of cardiomyocyte proteins with lipid peroxidation biomarker 4-hydroxynonenal (4-HNE) was examined as well. Fourteen male mice were randomized into the control (sedentary) group and the exercise group that was subjected to a swim exercise training program for 5 days a week for 5 months. Proteins were isolated from the left ventricular tissue, fractionated and digested for shotgun proteomics. Peptides were separated by nanoliquid chromatography and analyzed on an Orbitrap Fusion mass spectrometer using high-energy collision–induced dissociation and electron transfer dissociation fragmentation. We identified distinct ventricular protein signatures established in response to exercise training. Comparative proteomics identified 23 proteins that were upregulated and 37 proteins that were downregulated with exercise, in addition to 65 proteins that were identified only in ventricular tissue samples of exercised mice. Most of the proteins specific to exercised mice are involved in respiratory electron transport and/or implicated in glutathione conjugation. Additionally, 10 proteins were found to be modified with 4-HNE. This study provides new data on the effects of exercise on the cardiac proteome and contributes to our understanding of the molecular mechanisms underlying the beneficial effects of exercise on the heart.


Sign in / Sign up

Export Citation Format

Share Document