scholarly journals Endothelin-1 Stimulates Tyrosine Phosphorylation of p125 Focal Adhesion Kinase via Protein Kinase C in Neonatal Cardiac Myocytes

1998 ◽  
Vol 76 ◽  
pp. 272
Author(s):  
Rikako Yamauchi ◽  
Tomoko Hoshino ◽  
Kohei Kikkawa ◽  
Hideo Yabana ◽  
Sakae Murata
1994 ◽  
Vol 301 (2) ◽  
pp. 407-414 ◽  
Author(s):  
M K Saville ◽  
A Graham ◽  
K Malarkey ◽  
A Paterson ◽  
G W Gould ◽  
...  

The characteristics of protein tyrosine phosphorylation were examined in Rat-1 fibroblasts in response to endothelin-1 (ET-1) and 1-oleoyl-lysophosphatidic acid (LPA). Both agonists stimulated the biphasic tyrosine phosphorylation of at least three major proteins of approx. 120 kDa (pp116, pp120 and pp130) and two of 80 kDa (pp80 and pp70). Immunoprecipitation experiments indicated that the pp120 protein corresponded to the recently described focal adhesion protein kinase pp125fak. Phorbol 12-myristate 13-acetate, alone or in combination with the calcium ionophore A23187, also stimulated the phosphorylation of pp125fak but to a smaller extent than LPA or ET-1. Removal of both extracellular and intracellular Ca2+ did not significantly reduce LPA- and ET-1-stimulated tyrosine phosphorylation of pp125fak. In cells where protein kinase C activity was down-regulated or inhibited, ET-1-stimulated tyrosine phosphorylation of pp125fak was reduced to a greater extent than phosphorylation in response to LPA. In addition, ET-1-stimulated tyrosine phosphorylation of pp80 was decreased by 50-70% in response to protein kinase C inhibition at both 2 and 60 min whereas LPA-stimulated tyrosine phosphorylation of this protein was only reduced at 2 min. Pretreatment with pertussis toxin reduced the tyrosine phosphorylation of pp42 and pp44 forms of mitogen-activated protein kinase in response to both ET-1 and LPA but reduced the tyrosine phosphorylation of pp125fak only in response to LPA. These results indicate agonist-specific differences in the regulation of pathways mediating the tyrosine phosphorylation of pp125fak and other target proteins.


2004 ◽  
Vol 101 (2) ◽  
pp. 344-353 ◽  
Author(s):  
Souhayl Dahmani ◽  
Antoine Tesnière ◽  
Danielle Rouelle ◽  
Madeleine Toutant ◽  
Jean-Marie Desmonts ◽  
...  

Background Tyrosine protein kinase proteins exert a prominent control on signaling pathways and may couple rapid events, such as action potential and neurotransmitter release, to long-lasting changes in synaptic strength and survival. Whether anesthetics modulate tyrosine kinase activity remains unknown. The aim of the current study was therefore to examine the effects of intravenous and volatile anesthetics on the phosphorylation of focal adhesion kinase (ppFAK), a functionally important nonreceptor tyrosine kinase, in the rat hippocampus. Methods Phosphorylation of ppFAK was examined in hippocampal slices by immunoblotting with both antiphosphotyrosine and specific anti-ppFAK antibodies. Experiments were performed in the absence (control) or presence of various concentrations of pharmacologic or anesthetic agents or both. Results Clinically relevant concentrations of thiopental, propofol, etomidate, isoflurane, sevoflurane, and desflurane induced a concentration-related increase in tyrosine phosphorylation. In contrast, ketamine (up to 100 microm) and the nonimmobilizer F6 (1,2-dichlorohexafluorocyclobutane, 25 microm) did not significantly affect ppFAK phosphorylation. The anesthetic-induced increase in ppFAK phosphorylation was blocked by GF 109203X, RO 318220, and chelerythrin (100 microm), three structurally distinct inhibitors of protein kinase C and U 73122 (50 microm), an inhibitor of phospholipase C. The propofol- and isoflurane-induced increase in ppFAK phosphorylation was reversible and showed nonadditivity of effects with phorbol 12-myristate 13-acetate (an activator of protein kinase C, 0.1 microm). In contrast, ketamine (up to 100 microm), MK801 (10 microm, an N-methyl-d-aspartate receptor antagonist), bicuculline (10 microm, a gamma-aminobutyric acid type A receptor antagonist), and dantrolene (30 microm, an inhibitor of the ryanodine receptor) were ineffective in blocking anesthetic-induced activation of tyrosine phosphorylation. Conclusion Except for ketamine, anesthetic agents markedly increase tyrosine phosphorylation of ppFAK in the rat hippocampus, most likely via the phospholipase C-protein kinase C pathway, whereas the nonimmobilizer F6 does not. These results suggest that ppFAK represents a target for anesthetic action in the brain.


2013 ◽  
Vol 22 (5) ◽  
pp. 797-809 ◽  
Author(s):  
Byeong-Wook Song ◽  
Woochul Chang ◽  
Bum-Kee Hong ◽  
Il-Kwon Kim ◽  
Min-Ji Cha ◽  
...  

2004 ◽  
Vol 11 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Jin-Shuen Chen ◽  
Herng-Sheng Lee ◽  
Jong-Shiaw Jin ◽  
Ann Chen ◽  
Shih-Hua Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document