Itavastatin inhibits modified LDL-induced foam cell formation and scavenger pathway, mediated with Rab, Rho and Rac small G protein, in RAW264.7 macrophages

2000 ◽  
Vol 151 (1) ◽  
pp. 295 ◽  
Author(s):  
M. Kitahara ◽  
T. Kanaki ◽  
T. Tamaki ◽  
Y. Saito
2020 ◽  
Vol 21 (3) ◽  
pp. 817 ◽  
Author(s):  
Alexander N. Orekhov ◽  
Nikita G. Nikiforov ◽  
Vasily N. Sukhorukov ◽  
Marina V. Kubekina ◽  
Igor A. Sobenin ◽  
...  

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.


2016 ◽  
Vol 7 (7) ◽  
pp. 3201-3210 ◽  
Author(s):  
Shengjuan Zhao ◽  
Jianke Li ◽  
Lifang Wang ◽  
Xiaoxia Wu

Pomegranate peel polyphenols hindered ox-LDL-induced raw264.7 foam cell formation, by decreasing CD36 and promoting ABCA1 and LXRα expression.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Shutong Yao ◽  
Hua Tian ◽  
Cheng Miao ◽  
Li Zhao ◽  
Peng Jiao ◽  
...  

Objective: D-4F, an apolipoprotein A-I (apoA-I) mimetic peptide, exerts a variety of atheroprotective functions similar to apoA-I, the major protein component of high density lipoprotein (HDL), including acting as an antioxidant, mediating cholesterol efflux from foam cells and direct anti-inflammatory effects. Our previous studies have demonstrated that endoplasmic reticulum (ER) stress promotes macrophage-derived foam cell formation by upregulating CD36 expression and mediates oxidized low-density lipoprotein (ox-LDL)-induced macrophage apoptosis. The goal of this study was to investigate the protective effect of D-4F on ox-LDL-induced macrophage cytotoxicity and specifically the ER stress-C/EBP homologous protein (CHOP) pathway-mediated apoptosis. Methods and Results: Treatment with D-4F (12.5, 25 and 50 mg/L) attenuated ox-LDL (100 mg/L)-induced cholesterol accumulation in RAW264.7 macrophages and foam cell formation in a dose-dependent manner. Similar to tunicamycin (TM), a classical ER stress inducer, ox-LDL reduced cell viability and induced apoptosis in RAW264.7 macrophages. The cytotoxic effects of ox-LDL (100 mg/L) and TM (5 mg/L) were remarkably inhibited by D-4F treatment. Interestingly, we found that D-4F also significantly suppressed the ox-LDL- and TM-induced CD36 upregulation and activation of ER stress signaling events, including the phosphorylation of inositol-requiring enzyme 1 (IRE1) and nuclear translocation of activating transcription factor 6 (ATF6). In addition, exposure of RAW264.7 macrophages to ox-LDL or TM resulted in a significant increase in the expression of CHOP, a proapoptotic transcription factor regulated by IRE1 and ATF6 under conditions of ER stress. D-4F blocked these effects in a dose-dependent manner. Moreover, administration of apoE –/– mice with D-4F (1 mg/kg per day) suppressed apoptosis and the upregulation of CD36, phospho-IRE1, GRP78 and CHOP in macrophage-dense atherosclerotic lesions. Conclusion: These data indicate that D-4F can protect macrophages from ox-LDL-induced apoptosis and that the mechanism at least partially involves its ability to inhibit the ER stress-CHOP signaling pathway.


2010 ◽  
Vol 78 (3) ◽  
pp. 478-485 ◽  
Author(s):  
Hyung-Kyoung Lee ◽  
Seungeun Yeo ◽  
Jin-Sik Kim ◽  
Jin-Gu Lee ◽  
Yoe-Sik Bae ◽  
...  

2015 ◽  
Vol 43 (03) ◽  
pp. 443-455 ◽  
Author(s):  
Yanhong Si ◽  
Shoudong Guo ◽  
Yongqi Fang ◽  
Shucun Qin ◽  
Furong Li ◽  
...  

Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and injury is one of the major atherogenic factors. This study is aimed to investigate the protective effect of celery seed extract (CSE) on ox-LDL-induced injury of macrophages and the underlying signaling pathway. RAW264.7 macrophages were pre-incubated with CSE for 24 h, followed by stimulation with ox-LDL. Oil red O staining and enzymatic colorimetry indicated CSE significantly lessened lipid droplets and total cholesterol (TC) content in ox-LDL-injured macrophages. ELISA revealed that CSE decreased the secretion of inflammatory cytokine TNF-α and IL-6 by 12–27% and 5–15% respectively. MTT assay showed CSE promoted cell viability by 16–40%. Cell apoptosis was also analyzed by flow cytometry and laser scanning confocal microscope and the data indicated CSE inhibited ox-LDL-induced apoptosis of macrophages. Meanwhile, western blot analysis showed CSE suppressed NF-κBp65 and notch1 protein expressions stimulated by ox-LDL in macrophages. These results suggest that CSE inhibits ox-LDL-induced macrophages injury via notch1/NF-κB pathway.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V.N Sukhorukov ◽  
Y.V Markina ◽  
A.M Markin ◽  
M Bagheri Ekta ◽  
V.A Khotina ◽  
...  

Abstract Background Foam cell formation caused by modified LDL is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. 10 inflammation-related master regulators, which were involved in the cholesterol accumulation in cultured macrophages induced by the incubation with modified LDL, have been identified. Objective We hypothesised that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. Methods Cholesterol accumulation was evaluated in primary macrophages with master regulator genes knock-downed by siRNA for either IL15, EIF2AK3, F2RL1, TSPYL2, or ANXA1. Analysis of enriched transcription factor binding sites in promoters of differentially expressed genes and identification of master regulators in the signal transduction network were performed with TRANSFAC and TRANSPATH databases. Results Genes which were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads were determined. Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages, whereas atherogenic naturally occurring LDL caused significant cholesterol accumulation in the control cells. The ANXA1 gene knock-down caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. Conclusions The results, showing that inflammatory response and the cholesterol accumulation are related, may confirm our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): The Russian Science Foundation


Author(s):  
Berta Schulz ◽  
Gerhard Liebisch ◽  
Margot Grandl ◽  
Tobias Werner ◽  
Stefan Barlage ◽  
...  

2015 ◽  
Vol 53 (10) ◽  
pp. 1481-1487 ◽  
Author(s):  
Shuai Wang ◽  
Xue Zhang ◽  
Mingyue Liu ◽  
Hong Luan ◽  
Yubin Ji ◽  
...  

Life Sciences ◽  
1999 ◽  
Vol 64 (21) ◽  
pp. 1955-1965 ◽  
Author(s):  
Ritva Ylitalo ◽  
Olli Jaakkola ◽  
Pauliina Lehtolainen ◽  
Seppo Ylä-Herttuala

Sign in / Sign up

Export Citation Format

Share Document