Plasminogen activator inhibitor-1 (PAI-1) activity post myocardial infarction: the role of acute phase reactants, insulin-like molecules and promoter (4G/5G) polymorphism in the PAI-1 gene

2003 ◽  
Vol 168 (2) ◽  
pp. 297-304 ◽  
Author(s):  
A Panahloo
1999 ◽  
Vol 82 (07) ◽  
pp. 104-108 ◽  
Author(s):  
Franck Paganelli ◽  
Marie Christine Alessi ◽  
Pierre Morange ◽  
Jean Michel Maixent ◽  
Samuel Lévy ◽  
...  

Summary Background: Type 1 plasminogen activator inhibitor (PAI-1) is considered to be risk factor for acute myocardial infarction (AMI). A rebound of circulating PAI-1 has been reported after rt-PA administration. We investigated the relationships between PAI-1 levels before and after thrombolytic therapy with streptokinase (SK) as compared to rt-PA and the patency of infarct-related arteries. Methods and Results: Fifty five consecutive patients with acute MI were randomized to strep-tokinase or rt-PA. The plasma PAI-1 levels were studied before and serially within 24 h after thrombolytic administration. Vessel patency was assessed by an angiogram at 5 ± 1days. The PAI-1 levels increased significantly with both rt-PA and SK as shown by the levels obtained from a control group of 10 patients treated with coronary angioplasty alone. However, the area under the PAI-1 curve was significantly higher with SK than with rt-PA (p <0.01) and the plasma PAI-1 levels peaked later with SK than with rt-PA (18 h versus 3 h respectively). Conversely to PAI-1 levels on admission, the PAI-1 levels after thrombolysis were related to vessel patency. Plasma PAI-1 levels 6 and 18 h after SK therapy and the area under the PAI-1 curve were significantly higher in patients with occluded arteries (p <0.002, p <0.04 and p <0.05 respectively).The same tendency was observed in the t-PA group without reaching significance. Conclusions: This study showed that the PAI-1 level increase is more pronounced after SK treatment than after t-PA treatment. There is a relationship between increased PAI-1 levels after thrombolytic therapy and poor patency. Therapeutic approaches aimed at quenching PAI-1 activity after thrombolysis might be of interest to improve the efficacy of thrombolytic therapy for acute myocardial infarction.


1995 ◽  
Vol 73 (02) ◽  
pp. 261-267 ◽  
Author(s):  
Rosaire P Gray ◽  
Vidya Mohamed-Ali ◽  
David L H Patterson ◽  
John S Yudkin

SummaryA significant relationship has been described between plasminogen activator inhibitor-1 (PAI-1) and plasma insulin concentrations. However, most radioimmunoassays (RIA) substantially overestimate plasma insulin concentrations because of cross reaction with proinsulin-like molecules and it has been proposed that proinsulin-like molecules may be important determinants of PAI-1 activity. We measured fasting plasma immunoreactive insulin by conventional RIA, fasting plasma insulin (EIMA) by specific two site immuno-enzymometric assay, and intact proinsulin and des-31,32-proinsulin by two site immunoradiometric assay (IRMA) in 74 (50 nondiabetic and 24 diabetic) subjects who had survived a myocardial infarction between 6 and 24 months previously. In univariate analysis, PAI-1 activity correlated with serum triglycerides (rs=0.43; p <0.0001), insulin sensitivity (rs = -0.30; p = 0.004), and immunoreactive insulin (rs = 0.45; p <0.0001). However, the relationship between PAI-1 activity and plasma specific insulin (IEMA) was weaker (rs = 0.24; p = 0.019) than those with intact proinsulin (rs = 0.53; p <0.0001) and des-31,32-proinsulin (rs = 0.54; p <0.0001) despite the low concentrations of these proinsulin-like molecules. In multiple regression analysis, only des-31,32-proinsulin (p = 0.001) and serum triglycerides (p = 0.013) were significant determinants of PAI-1 activity. In conclusion, these results suggest that proinsulin-like molecules and serum triglycerides are important determinants of PAI-1 activity in survivors of myocardial infarction.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 220-225 ◽  
Author(s):  
PJ Declerck ◽  
MC Alessi ◽  
M Verstreken ◽  
EK Kruithof ◽  
I Juhan-Vague ◽  
...  

An enzyme-linked immunosorbent assay for plasminogen activator inhibitor-1 (PAI-1) in biologic fluids was developed on the basis of two murine monoclonal antibodies raised against PAI-1 purified from HT- 1080 fibrosarcoma cells. The lower limit of sensitivity of the assay in plasma is 2 ng/mL. The assay is 12 times less sensitive toward the PAI- 1/human tissue-type plasminogen activator (t-PA) complex as compared with free PAI-1. The intraassay, interassay, and interdilution coefficients of variation are 5.2%, 8.0%, and 7.1%, respectively. The level of PAI-1 in platelet-poor plasma of healthy subjects is 18 +/- 10 ng/mL (mean +/- SD, n = 45). In platelet-rich plasma after freezing and thawing, 92% of PAI-1 antigen is released from platelets, whereas only 8% is found in the corresponding platelet-poor plasma. In platelet-poor plasma from healthy subjects, a linear correlation (r = 0.80) was found between PAI activity and PAI-1 antigen. In plasma approximately two thirds of the PAI-1 antigen was functionally active, whereas only 5% of the PAI-1 antigen released from platelets was active. During pregnancy a progressive increase of PAI-1 antigen levels up to three- to sixfold the control value was observed. In plasma of patients with recurrent deep vein thrombosis, PAI-1 levels were 44 +/- 20 ng/mL (mean +/- SD, n = 7), during a clinically silent phase. Four of these patients had a level above 38 ng/mL (mean +/- 2 SD of normal). The present assay, based on stable and reproducible reagents, allows the specific determination of PAI-1 antigen in biologic fluids. It may facilitate interlaboratory comparisons and be useful for further investigations of the role of PAI-1 in clinical conditions associated with impaired fibrinolysis and/or a tendency to thrombosis and investigations of the role of PAI-1 in platelets.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 220-225 ◽  
Author(s):  
PJ Declerck ◽  
MC Alessi ◽  
M Verstreken ◽  
EK Kruithof ◽  
I Juhan-Vague ◽  
...  

Abstract An enzyme-linked immunosorbent assay for plasminogen activator inhibitor-1 (PAI-1) in biologic fluids was developed on the basis of two murine monoclonal antibodies raised against PAI-1 purified from HT- 1080 fibrosarcoma cells. The lower limit of sensitivity of the assay in plasma is 2 ng/mL. The assay is 12 times less sensitive toward the PAI- 1/human tissue-type plasminogen activator (t-PA) complex as compared with free PAI-1. The intraassay, interassay, and interdilution coefficients of variation are 5.2%, 8.0%, and 7.1%, respectively. The level of PAI-1 in platelet-poor plasma of healthy subjects is 18 +/- 10 ng/mL (mean +/- SD, n = 45). In platelet-rich plasma after freezing and thawing, 92% of PAI-1 antigen is released from platelets, whereas only 8% is found in the corresponding platelet-poor plasma. In platelet-poor plasma from healthy subjects, a linear correlation (r = 0.80) was found between PAI activity and PAI-1 antigen. In plasma approximately two thirds of the PAI-1 antigen was functionally active, whereas only 5% of the PAI-1 antigen released from platelets was active. During pregnancy a progressive increase of PAI-1 antigen levels up to three- to sixfold the control value was observed. In plasma of patients with recurrent deep vein thrombosis, PAI-1 levels were 44 +/- 20 ng/mL (mean +/- SD, n = 7), during a clinically silent phase. Four of these patients had a level above 38 ng/mL (mean +/- 2 SD of normal). The present assay, based on stable and reproducible reagents, allows the specific determination of PAI-1 antigen in biologic fluids. It may facilitate interlaboratory comparisons and be useful for further investigations of the role of PAI-1 in clinical conditions associated with impaired fibrinolysis and/or a tendency to thrombosis and investigations of the role of PAI-1 in platelets.


2004 ◽  
Vol 91 (03) ◽  
pp. 438-449 ◽  
Author(s):  
Michelle Durand ◽  
Julie Bødker ◽  
Anni Christensen ◽  
Daniel Dupont ◽  
Martin Hansen ◽  
...  

SummaryIn recent decades, evidence has been accumulating showing the important role of urokinase-type plasminogen activator (uPA) in growth, invasion, and metastasis of malignant tumours. The evidence comes from results with animal tumour models and from the observation that a high level of uPA in human tumours is associated with a poor patient prognosis. It therefore initially came as a surprise that a high tumour level of the uPA inhibitor plasminogen activator inhibitor-1 (PAI-1) is also associated with a poor prognosis, the PAI-1 level in fact being one of the most informative biochemical prognostic markers. We review here recent investigations into the possible tumour biological role of PAI-1, performed by animal tumour models, histological examination of human tumours, and new knowledge about the molecular interactions of PAI-1 possibly underlying its tumour biological functions. The exact tumour biological functions of PAI-1 remain uncertain but PAI-1 seems to be multifunctional as PAI-1 is expressed by multiple cell types and has multiple molecular interactions. The potential utilisation of PAI-1 as a target for anti-cancer therapy depends on further mapping of these functions.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3631-3636 ◽  
Author(s):  
C Krishnamurti ◽  
C Bolan ◽  
CA Colleton ◽  
TM Reilly ◽  
BM Alving

The role of defective fibrinolysis caused by elevated activity of plasminogen activator inhibitor-1 (PAI-1) in promoting fibrin deposition in vivo has not been well established. The present study compared the efficacy of thrombin or ancrod, a venom-derived enzyme that clots fibrinogen, to induce fibrin formation in rabbits with elevated PAI-1 levels. One set of male New Zealand rabbits received intravenous endotoxin to increase endogenous PAI-1 activity followed by a 1-hour infusion of ancrod or thrombin; another set of normal rabbits received intravenous human recombinant PAI-1 (rPAI-1) during an infusion of ancrod or thrombin. Thirty minutes after the end of the infusion, renal fibrin deposition was assessed by histopathology. Animals receiving endotoxin, rPAI-1, ancrod, or thrombin alone did not develop renal thrombi. All endotoxin-treated rabbits developed fibrin deposition when infused with ancrod (n = 4) or thrombin (n = 6). Fibrin deposition occurred in 7 of 7 rabbits receiving both rPAI-1 and ancrod and in only 1 of 6 receiving rPAI-1 and thrombin (P “ .01). In vitro, thrombin but not ancrod was inactivated by normal rabbit plasma and by purified antithrombin III or thrombomodulin. The data indicate that elevated levels of PAI-1 promote fibrin deposition in rabbits infused with ancrod but not with thrombin. In endotoxin-treated rabbits, fibrin deposition that occurs with thrombin infusion may be caused by decreased inhibition of procoagulant activity and not increased PAI-1 activity.


1994 ◽  
Vol 72 (06) ◽  
pp. 900-905 ◽  
Author(s):  
Harold A R Stringer ◽  
Peter van Swieten ◽  
Anton J G Horrevoets ◽  
Annelies Smilde ◽  
Hans Pannekoek

SummaryWe further investigated the role of the finger (F) and the kringle-2 (K2) domains of tissue-type plasminogen activator (t-PA) in fibrin-stimulated plasminogen activation. To that end, the action of purified (wt) t-PA or of variants lacking F (del.F) or K2 (del.K2) was assessed either in a static, human whole blood clot-lysis system or in whole blood thrombi generated in the “Chandler loop”. In both clot-lysis systems, significant differences were observed for the initiation of thrombolysis with equimolar concentrations of the t-PA variants. A relatively minor “lag phase” occurred in thrombolysis mediated by wt t-PA, whereas a 6.4-fold and 1.6-fold extension is found for del.F and del.K2, respectively. We observed identical lag-times, characteristic for each t-PA variant, in platelet-rich heads and in platelet-poor tails of thrombi. Since plasminogen activator inhibitor 1 (PAI-1) is preferentially retained in the platelet-rich heads, we conclude that the inhibitor does not interfere with the initial stage of thrombolysis but exerts its action in later stages, resulting in a reduction of the rate of clot lysis. A complementation clot-lysis assay was devised to study a potential interplay of del.F and del.K2. Accordingly, clot lysis was determined with combinations of del.F and del.K2 that were inversely varied in relation to equipotent dosage to distinguish between additive, antagonistic or synergistic effects of these variants. The isobole for combinations of del.F and del.K2 shows an independent, additive action of del.F and del.K2 in clot lysis. Under the conditions employed, namely a relatively high concentration of fibrin and Glu-plasminogen and a low concentration of t-PA variant, our data show: i) the crucial role of the F domain and the lack of effect of PAI-1 in initiation of thrombolysis, ii) the lack of importance of the fibrimbinding domains of t-PA and the regulatory role of PAI-1 in advanced stages of thrombolysis.


Sign in / Sign up

Export Citation Format

Share Document