scholarly journals Induction of synthesis of cholesterol side chain cleavage cytochrome P-450 and adrenodoxin by follicle-stimulating hormone, 8-bromo-cyclic AMP, and low density lipoprotein in cultured bovine granulosa cells.

1984 ◽  
Vol 259 (13) ◽  
pp. 8572-8577
Author(s):  
B Funkenstein ◽  
M R Waterman ◽  
E R Simpson
1994 ◽  
Vol 12 (2) ◽  
pp. 239-249 ◽  
Author(s):  
E L Yong ◽  
S G Hillier ◽  
M Turner ◽  
D T Baird ◽  
S C Ng ◽  
...  

ABSTRACT The co-ordinated biosynthesis of progesterone and oestradiol in the human ovary is critical for reproductive cyclicity and eventual pregnancy. The crucial regulatory enzymes for progesterone and oestradiol biosynthesis in granulosa cells are the cholesterol side-chain cleavage (P450scc) and aromatase (P450arom) enzymes respectively. We utilized the cDNA sequences encoding P450arom and P450scc to examine the roles of FSH and LH, and their intracellular second messenger, cyclic AMP (cAMP), in regulating steroidogenic gene expression. Mature granulosa cells (aspirated before the onset of the endogenous LH surge) and granulosa lutein cells (obtained after an ovulatory dose of human chorionic gonadotrophin) were cultured for 4 days with FSH, LH or dibutyryl cAMP (dbcAMP). After the period of culture, total RNA was extracted from granulosa cells and Northern analyses were performed utilizing 32P-labelled cDNAs encoding P450arom and P450scc. Spent culture media were analysed for steroid and cAMP content. Both FSH and LH strongly stimulated P450arom mRNA expression and oestradiol production in mature granulosa cells. On the other hand, P450scc mRNA expression and progesterone biosynthesis were weakly induced by FSH; maximal synthesis occurred only in the presence of LH. With both gonadotrophins at equivalent concentrations, LH generated a 30-fold higher level of cAMP than FSH. Furthermore, the differential effects of FSH and LH on P450 mRNA expression were reproduced by the presence of low and high concentrations of dbcAMP respectively. LH (and high levels of dbcAMP) increased P450arom mRNA expression in mature granulosa cells but inhibited its accumulation in granulosa lutein cells. In contrast, it stimulated P450scc mRNA expression and progesterone synthesis in both mature granulosa and granulosa lutein cells. Therefore, FSH/low cAMP levels stimulated P450arom gene expression and oestradiol production, while LH/high cAMP levels maximally induced P450scc gene expression and function, in a development-related manner consistent with steroid production in vivo. These findings support the hypothesis that one set of genes (like P450arom) in human granulosa cells is regulated by FSH/low cAMP levels and another (like P450scc) by LH/high cAMP levels.


1989 ◽  
Vol 67 (8) ◽  
pp. 968-973 ◽  
Author(s):  
Koichiro Takagi ◽  
Jerome F. Strauss III

Low density lipoprotein (LDL)-carried cholesterol is a primary substrate for steroid hormone synthesis by luteinized human granulosa cells. Chorionic gonadotropin and 8-bromo-cAMP both increase LDL receptor levels in granulosa cells by stimulating accumulation of the receptor mRNA. LDL and 25-hydroxycholesterol reduce LDL receptor expression, but this suppressive effect is partially overcome by 8-bromo-cAMP. Using fusion gene constructs containing the LDL receptor gene promoter transfected into JEG-3 cells, a cyclic AMP responsive enhancer could not be identified in the LDL receptor gene upstream promoter in transfection studies. We suggest that the LDL receptor gene in human steroidogenic cells is under negative control by a sterol effector, but that a cyclic AMP triggered process overcomes, to some extent, the sterol-mediated suppression. The detailed mechanisms by which sterol and cyclic AMP modulate LDL receptor gene expression remain to be elucidated.Key words: low density lipoproteins, low density lipoprotein receptors, cholesterol, steroidogenesis, gonadotropins.


1990 ◽  
Vol 124 (2) ◽  
pp. 255-260 ◽  
Author(s):  
P. J. O'Shaughnessy ◽  
S. Pearce ◽  
M. A. Mannan

ABSTRACT It has been proposed that changes in steroidogenesis which occur during early development of the corpus luteum may be due to increased availability of lipoproteins. Bovine follicular fluid, however, contains significant amounts of high-density lipoprotein (HDL), and granulosa cells are exposed to this lipoprotein before ovulation. To determine whether bovine granulosa cells can utilize HDL the effects of this lipoprotein on freshly isolated, non-luteinized granulosa cells and on granulosa cells undergoing luteinization in serum-free culture were examined. Cells were isolated from non-atretic, antral follicles and cultured for 12 h in 10% (v/v) lipoprotein-deficient serum to allow cell attachment. After this time cells were cultured in serum-free medium. During culture the cells underwent functional luteinization as assessed by an increase in basal progesterone output (9·6-fold in 7 days) which was associated with a marked increase in activity of cholesterol side-chain cleavage and loss of aromatase activity. Dibutyryl cyclic AMP (dbcAMP) increased basal production of progesterone about twofold but HDL alone had no effect. Addition of HDL plus dbcAMP, in contrast, caused a very marked stimulation (up to ten times) of basal steroidogenesis. This trophic effect of HDL and dbcAMP lasted at least 2 weeks. Activity of cholesterol side-chain cleavage was stimulated (threefold over basal) by dbcAMP during culture but HDL was without effect, alone or with dbcAMP. Addition of HDL (in the presence or absence of dbcAMP) to freshly isolated granulosa cells had no significant stimulatory effect on progesterone production over 12 h in six experiments, and in two of these experiments a significant inhibitory effect was seen. Incubation with 22R-hydroxycholesterol, in contrast, caused a marked stimulation of progesterone production, indicating that the steroidogenic capacity of the cells was not already saturated. Results presented here suggest that bovine granulosa cells are able to utilize HDL for steroidogenesis only after luteinization. The massive secretion of progesterone by luteinized granulosa cells which occurs in the presence of HDL suggests that this lipoprotein is very important in the development and maintenance of luteal cell function in cattle. Journal of Endocrinology (1990) 124, 255–260


Sign in / Sign up

Export Citation Format

Share Document