scholarly journals Selective inhibition of phiX RFII compared with fd RFII DNA synthesis in vitro. II. Resolution of discrimination reaction into multiple steps.

1977 ◽  
Vol 252 (8) ◽  
pp. 2534-2544 ◽  
Author(s):  
R Vicuna ◽  
J E Ikeda ◽  
J Hurwitz
2002 ◽  
Vol 46 (8) ◽  
pp. 2365-2372 ◽  
Author(s):  
Karen K. Biron ◽  
Robert J. Harvey ◽  
Stanley C. Chamberlain ◽  
Steven S. Good ◽  
Albert A. Smith ◽  
...  

ABSTRACT Benzimidazole nucleosides have been shown to be potent inhibitors of human cytomegalovirus (HCMV) replication in vitro. As part of the exploration of structure-activity relationships within this series, we synthesized the 2-isopropylamino derivative (3322W93) of 1H-β-d-ribofuranoside-2-bromo-5,6-dichlorobenzimidazole (BDCRB) and the biologically unnatural l-sugars corresponding to both compounds. One of the l derivatives, 1H-β-l-ribofuranoside-2-isopropylamino-5,6-dichlorobenzimidazole (1263W94), showed significant antiviral potency in vitro against both laboratory HCMV strains and clinical HCMV isolates, including those resistant to ganciclovir (GCV), foscarnet, and BDCRB. 1263W94 inhibited viral replication in a dose-dependent manner, with a mean 50% inhibitory concentration (IC50) of 0.12 ± 0.01 μM compared to a mean IC50 for GCV of 0.53 ± 0.04 μM, as measured by a multicycle DNA hybridization assay. In a single replication cycle, 1263W94 treatment reduced viral DNA synthesis, as well as overall virus yield. HCMV mutants resistant to 1263W94 were isolated, establishing that the target of 1263W94 was a viral gene product. The resistance mutation was mapped to the UL97 open reading frame. The pUL97 protein kinase was strongly inhibited by 1263W94, with 50% inhibition occurring at 3 nM. Although HCMV DNA synthesis was inhibited by 1263W94, the inhibition was not mediated by the inhibition of viral DNA polymerase. The parent benzimidazole d-riboside BDCRB inhibits viral DNA maturation and processing, whereas 1263W94 does not. The mechanism of the antiviral effect of l-riboside 1263W94 is thus distinct from those of GCV and of BDCRB. In summary, 1263W94 inhibits viral replication by a novel mechanism that is not yet completely understood.


1971 ◽  
Vol 133 (2) ◽  
pp. 321-338 ◽  
Author(s):  
Saimon Gordon ◽  
Zanvil Cohn

Mouse peritoneal macrophages, which do not synthesize DNA in vitro, were fused with melanocytes, a mouse cell strain which proliferates rapidly in vitro. DNA synthesis was induced in macrophage nuclei 2–3 hr after fusion and occurred irrespective of the number of macrophage nuclei present per melanocyte nucleus in each heterokaryon. 50–80% of macrophage nuclei initiated DNA synthesis in the 3–7 hr period after fusion. The activation of most 11–12-day chick red cell nuclei in melanocyte cytoplasm took longer than 10 hr. The lag before DNA synthesis may reflect the heterochromatin content of each nucleus. Studies with actinomycin showed that heterokaryon RNA synthesis was essential for subsequent macrophage DNA synthesis. This RNA was synthesized 1–4 hr before the DNA and was unlikely to be ribosomal RNA, since it was insensitive to <0.1 µg/ml actinomycin. Melanocytes and macrophages were treated before fusion with actinomycin and bromotubercidin to bring about a more selective inhibition of RNA synthesis. Macrophages pretreated for 1 hr with 5 µg/ml of actinomycin showed less than 20% of control RNA synthesis in the first 4 hr after fusion, but a normal activation of macrophage DNA synthesis. Pretreatment of melanocytes for 3–7 hr with 5 µg/ml bromotubercidin, a reversible inhibitor of RNA synthesis, prevented macrophage DNA synthesis without affecting macrophage RNA synthesis in the heterokaryons (81% of control). These studies showed that only melanocyte RNA synthesis was essential for the production of macrophage DNA. The exposure of one cell partner to actinomycin before fusion caused cross-toxicity of the untreated nucleus after fusion. Bromotubercidin, an adenosine analogue which is incorporated into RNA, did not give rise to such cross-toxicity after fusion. Once the macrophage nucleus becomes activated in the heterokaryon it becomes less sensitive to the action of actinomycin.


2001 ◽  
Vol 59 (3) ◽  
pp. 905-912
Author(s):  
William G. Couser ◽  
Jeffrey W. Pippin ◽  
Stuart J. Shankland

2021 ◽  
Vol 22 (10) ◽  
pp. 5194
Author(s):  
Paola Pontrelli ◽  
Francesca Conserva ◽  
Rossella Menghini ◽  
Michele Rossini ◽  
Alessandra Stasi ◽  
...  

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1347.2-1347
Author(s):  
S. Y. Ki ◽  
H. Shin ◽  
Y. Lee ◽  
H. R. Bak ◽  
H. Yu ◽  
...  

Background:Janus kinases (JAK1, JAK2, JAK3, and TYK2) play critical roles in mediating various cytokine signaling, and has been developed as a target for autoimmune diseases such as RA. Tofacitinib, oral Pan-JAK inhibitor, demonstrated efficacy in RA patients, but its widespread use is limited by safety issues. Baricitinib, JAK1/2 inhibitor, is also known to interfere with the hematopoiesis system, such as anemia and thrombocytopenia associated with suppression of JAK2 signals. Therefore, it is necessary to develop a new potent compound that selectively inhibits JAK1 over JAK2, 3Objectives:To identify the pharmacological characteristic based on efficacy of CJ-15314 as potent and selective JAK1 inhibitor for treatment of autoimmune disease.Methods:In vitro, cell-based, kinase panel, Kd value and human whole blood assay were performed to determine the inhibition potency and selectivity for JAK subfamily kinases. In vivo therapeutic potential was evaluated by RA model including rat Adjuvant-Induced Arthritis (AIA) and collagen-induced arthritic (CIA). To confirm the possibility of further expansion into the autoimmune disease, BioMAP® Diversity PLUS® Panel was performed by discoverX.Results:In vitro assay, CJ-15314 inhibited JAK kinase family in a concentration-dependent manner with IC50 values of 3.8 nM against JAK1, Selectivity for JAK1 over JAK2, 3 was approximately 18, 83 fold greater for CJ-15314. In 1mM ATP condition, CJ-15314 has been confirmed to have the highest JAK1 selectivity over competing drugs, under 1 mM ATP condition that reflects the physiological environment in the body. Similarly, Kd values has also confirmed the selectivity of JAK1, which is 10 fold higher than JAK2, 3. Accordingly, in human whole blood assays, CJ-15314 is 11 fold more potent against IL-6 induced pSTAT1 inhibition through JAK1 (IC50 value: 70 nM) than GM-CSF-induced pSTAT5 inhibition (JAK2) whereas baricitinib and filgotinib exhibited only 2 fold and 7 fold respectively.In vivo efficacy model, CJ-15314 inhibited disease severity scores in a dose dependent manner. In the rat AIA model, CJ-15314 at 30 mg/kg dose showed 95.3% decrease in arthritis activity score, 51.2% in figotinib at 30 mg/kg, 97.7% showed baricitinib at 10 mg/kg. CJ-15314 showed superior anti-arthritic efficacy than filgotinib. CJ-15314 also minimally affected anemia-related parameters but not bricitinib end of the 2-week treatment. In the rat CIA model, like 10 mg/kg of bricitinib, 30 mg/kg of CJ-15314 also has a similar effect, with a significant reduction in histopathological scores.In biomap diversity panel, CJ-15314 inhibited the expression of genes such as MCP-1, VCAM-1, IP-10, IL-8, IL-1, sTNF-α and HLA-DR confirming the possibility of expansion into other diseases beyond arthritis.Conclusion:CJ-15314 is a highly selective JAK1 inhibitor, demonstrates robust efficacy in RA animal model and is good candidate for further development for inflammatory diseases.* CJ-15314 is currently conducting a phase I trial in south Korea.References:[1]Clark JD et al. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014; 57(12):5023-38.[2]Burmester GR et al. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014; 10(2):77-88[3]Jean-Baptiste Telliez et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol., 2016; 11 (12):3442-3451Disclosure of Interests:so young Ki Employee of: CJ healthcare, hyunwoo shin Employee of: CJ healthcare, yelim lee Employee of: CJ healthcare, Hyoung rok Bak Employee of: CJ healthcare, hana yu Employee of: CJ healthcare, Seung Chan Kim Employee of: CJ healthcare, juhyun lee Employee of: CJ healthcare, donghyun kim Employee of: CJ healthcare, Dong-hyun Ko Employee of: CJ Healthcare, dongkyu kim Employee of: CJ healthcare


1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1631-1640 ◽  
Author(s):  
Janet R Donaldson ◽  
Charmain T Courcelle ◽  
Justin Courcelle

Abstract Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo.


Sign in / Sign up

Export Citation Format

Share Document