scholarly journals Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum.

1984 ◽  
Vol 259 (4) ◽  
pp. 2365-2374 ◽  
Author(s):  
G Meissner
FEBS Letters ◽  
1990 ◽  
Vol 259 (2) ◽  
pp. 269-272 ◽  
Author(s):  
F.Norman Briggs ◽  
K.Francis Lee ◽  
Joseph J. Feher ◽  
Andrew S. Wechsler ◽  
Kay Ohiendieck ◽  
...  

1989 ◽  
Vol 67 (9) ◽  
pp. 999-1006 ◽  
Author(s):  
Njanoor Narayanan ◽  
Philip Bedard ◽  
Trilochan S. Waraich

In the present study, the effects of the cytosolic Ca2+ transport inhibitor on ATP-dependent Ca2+ uptake by, and unidirectional passive Ca2+ release from, sarcoplassmic reticulum enriched membrane vesicles were examined in parallel experiments to determine whether inhibitor-mediated enhancement in Ca2+ efflux contributes to inhibition of net Ca2+ uptake. When assays were performed at pH 6.8 in the presence of oxalate, low concentrations (<100 μg/mL) of the inhibitor caused substantial inhibition of Ca2+ uptake by SR (28–50%). At this pH, low concentrations of the inhibitor did not cause enhancement of passive Ca2+ release from actively Ca2+-loaded sarcoplasmic reticulum. Under these conditions, high concentrations (>100 μg/mL) of the inhibitor caused stimulation of passive Ca2+ release but to a much lesser extent when compared with the extent of inhibition of active Ca2+ uptake (i.e., twofold greater inhibition of Ca2+ uptake than stimulation of Ca2+ release). When Ca2+ uptake and release assays were carried out at pH 7.4, the Ca2+ release promoting action of the inhibitor became more pronounced, such that the magnitude of enhancement in Ca2+ release at varying concentrations of the inhibitor (20–200 μg/mL) was not markedly different from the magnitude of inhibition of Ca2+ uptake. In the absence of oxalate in the assay medium, inhibition of Ca2+ uptake was observed at alkaline but not acidic pH. These findings imply that the inhibition of Ca2+ uptake observed at pH 6.8 is mainly due to decrease in the rate of active Ca2+ transport into the membrane vesicles rather than stimulation of passive Ca2+ efflux; at alkaline pH (pH 7.4), enhanced Ca2+ efflux contributes substantially, if not exclusively, to the decrease in Ca2+ uptake observed in the presence of the inhibitor. It is suggested that if the cytosolic inhibitor has actions similar to those observed in vitro in intact cardiac muscle, acid–base status of the intracellular fluid would be a major factor influencing the nature of its effects (inhibition of Ca2+ uptake or stimulation of Ca2+ release) on transmembrane Ca2+ fluxes across the sarcoplasmic reticulum.Key words: sarcoplasmic reticulum, Ca2+ uptake, Ca2+ release, endogenous inhibitor, heart muscle.


1996 ◽  
Vol 51 (7-8) ◽  
pp. 591-598 ◽  
Author(s):  
M. Nogues ◽  
A. Cuenda ◽  
F. Henao ◽  
C. Gutiérrez-Merino

Abstract The glycogenolytic-sarcoplasmic reticulum complex from rat skeletal muscle accumulates Ca2+ upon stimulation of glycogen phosphorolysis in the absence of added ATP. It is shown that an efficient Ca2+ uptake involves the sequential action of glycogen phosphorylase, phosphoglucomutase and hexokinase, which generate low concentrations of ATP (approximately 1 -2 μм) compartmentalized in the immediate vicinity of the sarcoplasmic reticulum Ca2+, Mg2+-ATPase (the Ca2+ pump). The Ca2+ uptake supported by glycogenolysis in this subcellular structure is strongly stimulated by micromolar concentrations of AMP, showing that the glycogen phosphorylase associated with this complex is in the dephosphorylated b form. The results point out that the flux through this compartmentalized metabolic pathway should be enhanced in physiological conditions leading to increased AMP concentrations in the sarcoplasm, such as long-lasting contractions and in ischemic muscle.


1996 ◽  
Vol 271 (2) ◽  
pp. C540-C546 ◽  
Author(s):  
M. Beltran ◽  
R. Bull ◽  
P. Donoso ◽  
C. Hidalgo

The effect of halothane on calcium release kinetics was studied in triad-enriched sarcoplasmic reticulum vesicles from frog skeletal muscle. Release from vesicles passively equilibrated with 3 mM 45CaCl2 was measured in the millisecond time range by use of a fast-filtration system. Halothane (400 microM) increased release rate constants at pH 7.1 and 7.4 as a function of extravesicular pCa. In contrast, halothane at pH 6.8 produced the same stimulation of release from pCa 7.0 to 3.0; no release took place in these conditions in the absence of halothane. Halothane shifted the calcium activation curve at pH 7.1, but not at pH 7.4, to the left and increased channel open probability at pH 7.1 in the cis pCa range of 7.0 to 5.0. These results indicate that cytosolic pCa and pH modulate the stimulatory effects of halothane on calcium release. Furthermore, halothane stimulated release in frog skeletal muscle at low pH and resting calcium concentration, indicating that in frog muscle halothane can override the closing of the release channels produced by these conditions, as it does in malignant hyperthermia-susceptible porcine muscle.


1996 ◽  
Vol 271 (1) ◽  
pp. 1-1
Author(s):  
M. Beltrán ◽  
R. Bull ◽  
P. Donoso ◽  
C. Hidalgo

Pages C540-C546: M. Beltrán, R. Bull, P. Donoso, and C. Hidalgo. “Ca2+- and pH-dependent halothane stimulation of Ca2+ release in sarcoplasmic reticulum from frog muscle.” Page C543, because of a printer's error, Fig. 6 was inadvertently published as a repeat of Fig. 5. The correct Fig. 6 appears below. (See PDF)


1989 ◽  
Vol 257 (6) ◽  
pp. C1149-C1157 ◽  
Author(s):  
R. A. Meyer

Phosphorus nuclear magnetic resonance (NMR) spectra and twitch tension were recorded during stimulation of gastrocnemius muscles of pentobarbital sodium-anesthetized rats which had been fed the creatine analogue beta-guanidinopropionic acid (beta-GPA, 2% diet) for periods from 0 (control) to 8 wk. Total creatine content of unstimulated muscles decreased by 42, 67, 82, and 88% compared with controls after 2-, 4-, 6-, and 8-wk feeding, respectively. The staircase effect observed in control muscles during 8 min of twitch stimulation at 0.25, 0.5, and 0.75 Hz was reduced after 2- to 8-wk beta-GPA feeding. However, after 6- to 8-wk feeding, the twitch force at the end of 8 min of stimulation was not different from controls. The time constant for phosphocreatine (PCr) changes at the onset of and during recovery after stimulation was proportional to total creatine content. The relationship between PCr content and twitch rate times force at the end of stimulation was linear, with slope proportional to total creatine content. PCr content in beta-GPA-fed animals was transiently greater during recovery than before stimulation, suggesting a regulatory effect of the inorganic phosphate released by hydrolysis of phosphorylated beta-GPA. The results are consistent with linear models of respiratory control in which the creatine kinase reaction acts as a simple buffer of adenine nucleotide levels.


Sign in / Sign up

Export Citation Format

Share Document