scholarly journals ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P NMR.

1988 ◽  
Vol 263 (22) ◽  
pp. 10600-10607 ◽  
Author(s):  
E Y Sako ◽  
P B Kingsley-Hickman ◽  
A H From ◽  
J E Foker ◽  
K Ugurbil
1990 ◽  
Vol 258 (5) ◽  
pp. H1357-H1365 ◽  
Author(s):  
E. D. Lewandowski ◽  
D. L. Johnston

13C and 31P nuclear magnetic resonance (NMR) spectra were used to assess substrate oxidation and high-energy phosphates in postischemic (PI) isolated rabbit hearts. Phosphocreatine (PCr) increased in nonischemic controls on switching from glucose perfusion to either 2.5 mM [3-13C]pyruvate (120%, n = 7) or [2-13C]acetate (114%, n = 8, P less than 0.05). ATP content, oxygen consumption (MVO2), and hemodynamics (dP/dt) were not affected by substrate availability in control or PI hearts. dP/dt was 40-60% lower in PI hearts during reperfusion after 10 min ischemia. Hearts reperfused with either pyruvate (n = 11) or acetate (n = 8) regained preischemic PCr levels within 45 s. Steady-state ATP levels were 55-70% of preischemia with pyruvate and 52-60% with acetate. Percent maximum [4-13C]glutamate signal showed reduced conversion of pyruvate to glutamate via the tricarboxylic acid (TCA) cycle at 4-min reperfusion (PI = 24 +/- 4%, means +/- SE; Control = 48 +/- 4%). The increase in 13C signal from the C-4 position of glutamate was similar to control hearts within 10.5 min. The increase in [4-13C]glutamate signal from acetate was not different between PI and control hearts. The ratio of [2-13C]Glu:[4-13C]Glu, reflecting TCA cycle activity, was reduced in PI hearts with acetate for at least 10 min (Control = 0.76 +/- 0.03; PI = 0.51 +/- 0.09) until steady state was reached. Despite rapid recovery of oxidative phosphorylation, contractility remained impaired and substrate oxidation was significantly slowed in postischemic hearts.


2000 ◽  
Vol 278 (1) ◽  
pp. H305-H312 ◽  
Author(s):  
Ryan M. Fryer ◽  
Janis T. Eells ◽  
Anna K. Hsu ◽  
Michele M. Henry ◽  
Garrett J. Gross

We examined the role of the sarcolemmal and mitochondrial KATPchannels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 ± 1%) versus control (56 ± 1%). The sarcolemmal KATP channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial KATP channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 ± 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 ± 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 ± 0.30 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 ± 0.06 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. IPC significantly increased ATP synthesis to 1.86 ± 0.23 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 ± 0.15 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1). These data are consistent with the notion that inhibition of mitochondrial KATPchannels attenuates IPC by reducing IPC-induced protection of mitochondrial function.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Johannes A Pille ◽  
Michele M Salzman ◽  
Anna A Sonju ◽  
Felicia P Lotze ◽  
Josephine E Hees ◽  
...  

Introduction: In a pig model of myocardial infarction (MI), intracoronary delivered Poloxamer (P) 188 significantly reduces ischemia/reperfusion (IR) injury when given immediately upon reperfusion, with improved mitochondrial function as a predominant effect. As mitochondria are heavily damaged during IR, a direct effect of P188 on mitochondria may lead to better therapy options during reperfusion. To show not only a similar reduction of IR injury by P188 in the brain, but also a direct P188 effect on mitochondria, we established an in-vitro model of IR that consists of damaging isolated rat brain mitochondria with hydrogen peroxide (H 2 O 2 ), one component of ischemia, then applying P188, and analyzing mitochondrial function. Methods: Male Sprague-Dawley rat brains were removed, and the mitochondria isolated by differential centrifugation and Percoll gradients, then kept on ice to slow their bioenergetics prior to any experimental treatments. Mitochondria were exposed to 200 μM H 2 O 2 for 10 min at room temperature with slight agitation; controls received no H 2 O 2 . Samples were then diluted ½ with buffer ± P188 (250 μM after dilution) to simulate reperfusion and treatment, and kept at room temperature for 10 further minutes. ATP synthesis was measured in a luminometer using a luciferase enzymatic assay. Oxygen consumption was measured by closed cell respirometry with an oxygen meter. In both assays, Complex I and Complex II were examined; Complex I substrates glutamate and malate, Complex II substrate succinate plus the Complex I inhibitor rotenone. Statistics: Data are expressed as mean ± SEM. One-Way ANOVA, SNK-Test; Kruskal-Wallis-Test; α=0.05, * vs control. Results: In both Complex I and II, mitochondrial function was significantly impaired by H 2 O 2 , with ATP synthesis affected more at Complex I and oxygen consumption affected more at Complex II. Addition of P188 did not provide any significant improvement in mitochondrial function. Conclusions: Although P188 significantly reduced IR injury when given during reperfusion in a pig model of MI, it does not appear to provide direct protection to mitochondria in this in-vitro model. Whether the exposure to H 2 O 2 causes the appropriate injury for P188 to become effective remains to be elucidated.


2013 ◽  
Vol 115 (6) ◽  
pp. 803-811 ◽  
Author(s):  
Gwenael Layec ◽  
Luke J. Haseler ◽  
Joel D. Trinity ◽  
Corey R. Hart ◽  
Xin Liu ◽  
...  

Although phosphorus magnetic resonance spectroscopy (31P-MRS)-based evidence suggests that in vivo peak mitochondrial respiration rate in young untrained adults is limited by the intrinsic mitochondrial capacity of ATP synthesis, it remains unknown whether a large, locally targeted increase in convective O2 delivery would alter this interpretation. Consequently, we examined the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last minute of exercise, on oxygen delivery and mitochondrial function in the calf muscle of nine young adults compared with free-flow conditions (FF). To this aim, we used an integrative experimental approach combining 31P-MRS, Doppler ultrasound imaging, and near-infrared spectroscopy. Limb blood flow [area under the curve (AUC), 1.4 ± 0.8 liters in FF and 2.5 ± 0.3 liters in RH, P < 0.01] and convective O2 delivery (AUC, 0.30 ± 0.16 liters in FF and 0.54 ± 0.05 liters in RH, P < 0.01), were significantly increased in RH compared with FF. RH was also associated with significantly higher capillary blood flow ( P < 0.05) and faster tissue reoxygenation mean response times (70 ± 15 s in FF and 24 ± 15 s in RH, P < 0.05). This resulted in a 43% increase in estimated peak mitochondrial ATP synthesis rate (29 ± 13 mM/min in FF and 41 ± 14 mM/min in RH, P < 0.05) whereas the phosphocreatine (PCr) recovery time constant in RH was not significantly different ( P = 0.22). This comprehensive assessment of local skeletal muscle O2 availability and utilization in untrained subjects reveals that mitochondrial function, assessed in vivo by 31P-MRS, is limited by convective O2 delivery rather than an intrinsic mitochondrial limitation.


2016 ◽  
Vol 37 (6) ◽  
Author(s):  
Liang Sha ◽  
Hiroaki Daitoku ◽  
Sho Araoi ◽  
Yuta Kaneko ◽  
Yuta Takahashi ◽  
...  

ABSTRACT Protein arginine methyltransferase 1 (PRMT-1) catalyzes asymmetric arginine dimethylation on cellular proteins and modulates various aspects of biological processes, such as signal transduction, DNA repair, and transcriptional regulation. We have previously reported that the null mutant of prmt-1 in Caenorhabditis elegans exhibits a slightly shortened life span, but the physiological significance of PRMT-1 remains largely unclear. Here we explored the role of PRMT-1 in mitochondrial function as hinted by a two-dimensional Western blot-based proteomic study. Subcellular fractionation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that PRMT-1 is almost entirely responsible for asymmetric arginine dimethylation on mitochondrial proteins. Importantly, isolated mitochondria from prmt-1 mutants represent compromised ATP synthesis in vitro, and whole-worm respiration in prmt-1 mutants is decreased in vivo. Transgenic rescue experiments demonstrate that PRMT-1-dependent asymmetric arginine dimethylation is required to prevent mitochondrial reactive oxygen species (ROS) production, which consequently causes the activation of the mitochondrial unfolded-protein response. Furthermore, the loss of enzymatic activity of prmt-1 induces food avoidance behavior due to mitochondrial dysfunction, but treatment with the antioxidant N-acetylcysteine significantly ameliorates this phenotype. These findings add a new layer of complexity to the posttranslational regulation of mitochondrial function and provide clues for understanding the physiological roles of PRMT-1 in multicellular organisms.


1986 ◽  
Vol 3 (5) ◽  
pp. 796-800 ◽  
Author(s):  
F. P. Haseltine ◽  
F. Arias-Mendoza ◽  
A. M. Kaye ◽  
H. Degani
Keyword(s):  
31P Nmr ◽  

2020 ◽  
Author(s):  
Brandon J. Berry ◽  
Aksana Baldzizhar ◽  
Andrew P. Wojtovich

ABSTRACTOrganisms adapt to their environment through coordinated changes in mitochondrial function and metabolism. The mitochondrial protonmotive force (PMF) is an electrochemical gradient that powers ATP synthesis and adjusts metabolism to energetic demands via cellular signaling. It is unknown how or where transient PMF changes are sensed and signaled due to lack of precise spatiotemporal control in vivo. We addressed this by expressing a light-activated proton pump in mitochondria to spatiotemporally “turn off” mitochondrial function through PMF dissipation in tissues with light. We applied our construct – mitochondria-OFF (mtOFF) – to understand how metabolic status impacts hypoxia resistance, a response that relies on mitochondrial function. mtOFF activation induced starvation-like behavior mediated by AMP-activated protein kinase (AMPK). We found prophylactic mtOFF activation increased survival following hypoxia, and that protection relied on neuronal AMPK. Our study links spatiotemporal control of mitochondrial PMF to cellular metabolic changes that mediate behavior and stress resistance.


Author(s):  
Daniel Missailidis ◽  
Sarah Annesley ◽  
Claire Allan ◽  
Oana Sanislav ◽  
Brett Lidbury ◽  
...  

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an enigmatic condition characterized by exacerbation of symptoms after exertion (post-exertional malaise or &ldquo;PEM&rdquo;), and by fatigue whose severity and associated requirement for rest are excessive and disproportionate to the fatigue-inducing activity. There is no definitive molecular marker or known underlying pathological mechanism for the condition. Increasing evidence for aberrant energy metabolism suggests a role for mitochondrial dysfunction in ME/CFS. Our objective was therefore to measure mitochondrial function and cellular stress sensing in actively metabolising patient blood cells. We immortalized lymphoblasts isolated from 51 ME/CFS patients diagnosed according to the Canadian Consensus Criteria and an age- and gender-matched control group. Parameters of mitochondrial function and energy stress sensing were assessed by Seahorse extracellular flux analysis, proteomics, and an array of additional biochemical assays. As a proportion of the basal oxygen consumption rate (OCR), the rate of ATP synthesis by Complex V was significantly reduced in ME/CFS lymphoblasts, while significant elevations were observed in Complex I OCR, maximum OCR, spare respiratory capacity, nonmitochondrial OCR and &ldquo;proton leak&rdquo; as a proportion of the basal OCR. This was accompanied by a reduction of mitochondrial membrane potential, chronically hyperactivated TOR Complex I stress signalling and upregulated expression of mitochondrial respiratory complexes, fatty acid transporters and enzymes of the &beta;-oxidation and TCA cycles. By contrast, mitochondrial mass and genome copy number, as well as glycolytic rates and steady state ATP levels were unchanged. Our results suggest a model in which ME/CFS lymphoblasts have a Complex V defect accompanied by compensatory upregulation of their respiratory capacity that includes the mitochondrial respiratory complexes, membrane transporters and enzymes involved in fatty acid &beta;-oxidation. This homeostatically returns ATP synthesis and steady state levels to &ldquo;normal&rdquo; in the resting cells, but may leave them unable to adequately respond to acute increases in energy demand as the relevant homeostatic pathways are already activated.


Sign in / Sign up

Export Citation Format

Share Document