scholarly journals Mitochondrial function and increased convective O2 transport: implications for the assessment of mitochondrial respiration in vivo

2013 ◽  
Vol 115 (6) ◽  
pp. 803-811 ◽  
Author(s):  
Gwenael Layec ◽  
Luke J. Haseler ◽  
Joel D. Trinity ◽  
Corey R. Hart ◽  
Xin Liu ◽  
...  

Although phosphorus magnetic resonance spectroscopy (31P-MRS)-based evidence suggests that in vivo peak mitochondrial respiration rate in young untrained adults is limited by the intrinsic mitochondrial capacity of ATP synthesis, it remains unknown whether a large, locally targeted increase in convective O2 delivery would alter this interpretation. Consequently, we examined the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last minute of exercise, on oxygen delivery and mitochondrial function in the calf muscle of nine young adults compared with free-flow conditions (FF). To this aim, we used an integrative experimental approach combining 31P-MRS, Doppler ultrasound imaging, and near-infrared spectroscopy. Limb blood flow [area under the curve (AUC), 1.4 ± 0.8 liters in FF and 2.5 ± 0.3 liters in RH, P < 0.01] and convective O2 delivery (AUC, 0.30 ± 0.16 liters in FF and 0.54 ± 0.05 liters in RH, P < 0.01), were significantly increased in RH compared with FF. RH was also associated with significantly higher capillary blood flow ( P < 0.05) and faster tissue reoxygenation mean response times (70 ± 15 s in FF and 24 ± 15 s in RH, P < 0.05). This resulted in a 43% increase in estimated peak mitochondrial ATP synthesis rate (29 ± 13 mM/min in FF and 41 ± 14 mM/min in RH, P < 0.05) whereas the phosphocreatine (PCr) recovery time constant in RH was not significantly different ( P = 0.22). This comprehensive assessment of local skeletal muscle O2 availability and utilization in untrained subjects reveals that mitochondrial function, assessed in vivo by 31P-MRS, is limited by convective O2 delivery rather than an intrinsic mitochondrial limitation.

2002 ◽  
Vol 16 (3-4) ◽  
pp. 317-334 ◽  
Author(s):  
Graham J. Kemp ◽  
Neil Roberts ◽  
William E. Bimson ◽  
Ali Bakran ◽  
Simon P. Frostick

In exercising muscle, creatine kinase ensures that mismatch between ATP supply and ATP use results in net phosphocreatine (PCr) splitting. This,inter alia, makes31P magnetic resonance spectroscopy a useful tool for studying muscle ‘energy metabolism’ noninvasivelyin vivo. We combined this with near–infrared spectroscopy (NIRS) to study ATP synthesis and oxygenation in calf muscle of normal subjects and patients with peripheral vascular disease. Experimental and clinical details and basic data have been published elsewhere (G.J. Kemp et al.,Journal of Vascular Surgery34 (2001), 1103–10); we here propose an analysis of interactions between metabolic ‘error signals’ and cellular PO2(estimated from NIRS changes, provisionally assumed to reflect deoxymyoglobin). Post–exercise PCr recovery is monoexponential, and the linear relationship between PCr resynthesis rate (= oxidative ATP synthesis) and the perturbation in PCr (conceptually the simplest error signal) is consistent with negative feedback. In patients the inferred ‘mitochondrial capacity’ (= oxidative ATP synthesis at ‘zero’ PCr) is decreased by 53±6%, leading to reduced oxidative ATP contribution in exercise, because of increased deoxygenation. Increased PCr perturbation partially outweighs cellular hypoxia, but as low cellular PO2is required for capillary–mitochondrion O2diffusion, rate–signal relationships may overstate maximum oxidative ATP synthesis rate.


2019 ◽  
Vol 316 (1) ◽  
pp. R76-R86 ◽  
Author(s):  
Jonathan D. Kasper ◽  
Ronald A. Meyer ◽  
Daniel A. Beard ◽  
Robert W. Wiseman

During aerobic exercise (>65% of maximum oxygen consumption), the primary source of acetyl-CoA to fuel oxidative ATP synthesis in muscle is the pyruvate dehydrogenase (PDH) reaction. This study investigated how regulation of PDH activity affects muscle energetics by determining whether activation of PDH with dichloroacetate (DCA) alters the dynamics of the phosphate potential of rat gastrocnemius muscle during contraction. Twitch contractions were induced in vivo over a broad range of intensities to sample submaximal and maximal aerobic workloads. Muscle phosphorus metabolites were measured in vivo before and after DCA treatment by phosphorus nuclear magnetic resonance spectroscopy. At rest, DCA increased PDH activation compared with control (90 ± 12% vs. 23 ± 3%, P < 0.05), with parallel decreases in inorganic phosphate (Pi) of 17% (1.4 ± 0.2 vs. 1.7 ± 0.1 mM, P < 0.05) and an increase in the free energy of ATP hydrolysis (ΔGATP) (−66.2 ± 0.3 vs. −65.6 ± 0.2 kJ/mol, P < 0.05). During stimulation DCA increased steady-state phosphocreatine (PCr) and the magnitude of ΔGATP, with concomitant reduction in Pi and ADP concentrations. These effects were not due to kinetic alterations in PCr hydrolysis, resynthesis, or glycolytic ATP production and altered the flow-force relationship between mitochondrial ATP synthesis rate and ΔGATP. DCA had no significant effect at 1.0- to 2.0-Hz stimulation because physiological mechanisms at these high stimulation levels cause maximal activation of PDH. These data support a role of PDH activation in the regulation of the energetic steady state by altering the phosphate potential (ΔGATP) at rest and during contraction.


1995 ◽  
Vol 78 (6) ◽  
pp. 2131-2139 ◽  
Author(s):  
C. H. Thompson ◽  
G. J. Kemp ◽  
A. L. Sanderson ◽  
G. K. Radda

To investigate mitochondrial regulation and its response to a defect in oxidative metabolism, we used 31P-magnetic resonance spectroscopy to study phosphocreatine (PCr) recovery in rat leg muscle after sciatic nerve stimulation at 1-4 Hz. We studied normal animals and animals with defective skeletal muscle mitochondrial function after experimental cardiac infarction. To analyze these data, we used three current theoretical approaches to the control of mitochondrial ATP synthesis, based on its hyperbolic relationship to cytosolic ADP concentration and on its linear relationships to PCr concentration and the free energy of ATP hydrolysis. The mitochondrial ADP concentration for one-half maximum rate of ATP synthesis appeared at least twice as high as the 30 microM expected from in vitro studies. According to all three approaches, the apparent maximum rate of ATP synthesis was independent of stimulation frequency and end-exercise pH and PCr and ADP concentrations and was reduced by approximately 50% after experimental cardiac infarction. Analysis of PCr recovery kinetics is a robust and practical way to study mitochondrial regulation and to quantify effective mitochondrial defects in vivo.


2010 ◽  
Vol 299 (5) ◽  
pp. C1136-C1143 ◽  
Author(s):  
N. M. A. van den Broek ◽  
J. Ciapaite ◽  
K. Nicolay ◽  
J. J. Prompers

31P magnetic resonance spectroscopy (MRS) has been used to assess skeletal muscle mitochondrial function in vivo by measuring 1) phosphocreatine (PCr) recovery after exercise or 2) resting ATP synthesis flux with saturation transfer (ST). In this study, we compared both parameters in a rat model of mitochondrial dysfunction with the aim of establishing the most appropriate method for the assessment of in vivo muscle mitochondrial function. Mitochondrial dysfunction was induced in adult Wistar rats by daily subcutaneous injections with the complex I inhibitor diphenyleneiodonium (DPI) for 2 wk. In vivo 31P MRS measurements were supplemented by in vitro measurements of oxygen consumption in isolated mitochondria. Two weeks of DPI treatment induced mitochondrial dysfunction, as evidenced by a 20% lower maximal ADP-stimulated oxygen consumption rate in isolated mitochondria from DPI-treated rats oxidizing pyruvate plus malate. This was paralleled by a 46% decrease in in vivo oxidative capacity, determined from postexercise PCr recovery. Interestingly, no significant difference in resting, ST-based ATP synthesis flux was observed between DPI-treated rats and controls. These results show that PCr recovery after exercise has a more direct relationship with skeletal muscle mitochondrial function than the ATP synthesis flux measured with 31P ST MRS in the resting state.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 126-127
Author(s):  
Marta Zampino ◽  
Luigi Ferrucci ◽  
Richard Spencer ◽  
Kenneth Fishbein ◽  
Eleanor Simonsick ◽  
...  

Abstract Chronic low-grade inflammation often occurs with aging and has been associated with negative health outcomes. Despite extensive research on the origins of “inflammaging”, the causative mechanisms remain unclear. However, a connection between poor mitochondrial health and chronic inflammation has been hypothesized, with decreasing mitochondrial function occurring with age and precipitating an increase in reactive oxygen species and other pro-inflammatory macromolecules such as mitochondrial DNA. We tested this hypothesis on a population of 619 subjects from the Baltimore Longitudinal Study of Aging, measuring muscle mitochondrial oxidative capacity in vivo by phosphorus magnetic resonance spectroscopy (P-MRS), and plasma interleukin (IL)-6, the most widely used biomarker of inflammaging. The P-MRS-derived post-exercise phosphocreatine recovery time constant tau-PCr, a measure of oxidative capacity, was expressed as a categorical variable through assignment to quintiles. Participants in the first quintile of tau-PCr (best mitochondrial function) were taken as reference and compared to the others using linear regression analysis adjusted for sex, age, lean and fat body mass, and physical activity. Those participants with the lowest oxidative capacity had significantly higher log(IL-6) levels as compared to the reference group. However, data from the other quintiles was not significantly different from the reference values. In conclusion, severe impairment of oxidative capacity is associated with increased inflammation. This study design does not provide conclusive evidence of whether increased inflammation and impaired bioenergetic recovery are both caused by underlying poor health status, or whether mitochondrial deficits lead directly to the observed inflammation; we anticipate addressing this important question with longitudinal studies.


2015 ◽  
Vol 290 (34) ◽  
pp. 21032-21041 ◽  
Author(s):  
Naman B. Shah ◽  
Thomas M. Duncan

F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.


Author(s):  
Miles F. Bartlett ◽  
Scott M. Jordan ◽  
Dennis M. Hueber ◽  
Michael D. Nelson

Near-infrared diffuse correlation spectroscopy (DCS) is increasingly utilized to study relative changes in skeletal muscle blood flow. However, most diffuse correlation spectrometers assume that tissue optical properties- such as absorption (μa) and reduced scattering (μ's) coefficients- remain constant during physiological provocations, which is untrue for skeletal muscle. Here, we interrogate how changes in tissue μa and μ's affect DCS calculations of blood flow index (BFI). We recalculated BFI using raw autocorrelation curves and μa/μ's values recorded during a reactive hyperemia protocol in 16 healthy young individuals. First, we show that incorrectly assuming baseline μa and μ's substantially affects peak BFI and BFI slope when expressed in absolute terms (cm2/s, p<0.01) but these differences are abolished when expressed in relative terms (% baseline). Next, to evaluate the impact of physiologic changes in μa and μ's, we compared peak BFI and BFI slope when μa and μ's were held constant throughout the reactive hyperemia protocol versus integrated from a 3s-rolling average. Regardless of approach, group means for peak BFI and BFI slope did not differ. Group means for peak BFI and BFI slope were also similar following ad absurdum analyses, where we simulated supraphysiologic changes in μa/μ's. In both cases, however, we identified individual cases where peak BFI and BFI slope were indeed affected, with this result being driven by relative changes in μa over μ's. Overall, these results provide support for past reports in which μa/μ's were held constant but also advocate for real-time incorporation of μa and μ's moving forward.


1994 ◽  
Vol 77 (1) ◽  
pp. 5-10 ◽  
Author(s):  
K. K. McCully ◽  
S. Iotti ◽  
K. Kendrick ◽  
Z. Wang ◽  
J. D. Posner ◽  
...  

Simultaneous measurements of phosphocreatine (PCr) and oxyhemoglobin (HbO2) saturation were made during recovery from exercise in calf muscles of five male subjects. PCr was measured using magnetic resonance spectroscopy in a 2.0-T 78-cm-bore magnet with a 9-cm-diam surface coil. Relative HbO2 saturation was measured as the difference in absorption of 750- and 850-nm light with use of near-infrared spectroscopy. The light source and detectors were 3 cm apart. Exercise consisted of isokinetic plantar flexion in a supine position. Two 5-min submaximal protocols were performed with PCr depletion to 60% of resting values and with pH values of > 7.0. Then two 1-min protocols of rapid plantar flexion were performed to deplete PCr values to 5–20% of resting values with pH values of < 6.8. Areas of PCr peaks (every 8 s) and HbO2 saturation (every 1 s) were fit to a monoexponential function, and a time constant was calculated. The PCr time constant was larger after maximal exercise (68.3 +/- 10.5 s) than after submaximal exercise (36.0 +/- 6.5 s), which is consistent with the effects of low pH on PCr recovery. HbO2 resaturation approximated submaximal PCr recovery and was not different between maximal (29.4 +/- 5.5 s) and submaximal (27.6 +/- 6.0 s) exercise. We conclude that magnetic resonance spectroscopy measurements of PCr recovery and near-infrared spectroscopy measurements of recovery of HbO2 saturation provide similar information as long as muscle pH remains near 7.0.


Sign in / Sign up

Export Citation Format

Share Document