scholarly journals Use of fetal intestinal isografts from normal and transgenic mice to study the programming of positional information along the duodenal-to-colonic axis.

1992 ◽  
Vol 267 (21) ◽  
pp. 15122-15133
Author(s):  
D.C. Rubin ◽  
E Swietlicki ◽  
K.A. Roth ◽  
J.I. Gordon
Development ◽  
1990 ◽  
Vol 108 (3) ◽  
pp. 435-442 ◽  
Author(s):  
A.W. Puschel ◽  
R. Balling ◽  
P. Gruss

During development, positional values have to be assigned to groups of cells. The murine Hox genes are a class of genes that are predicted to be involved at some stage in this process. During embryogenesis they are expressed in distinct overlapping region- and stage-specific patterns and therefore must be regulated in response to positional information. In this study, we have analysed the activity of Hox1.1 promoter sequences in transgenic mice. The use of lacZ as a marker allows a detailed analysis of expression at the single cell level during early embryonic development. We show that 3.6 kbp of promoter and 1.7 kbp of 3′ sequences provide sufficient regulatory information to express a transgene in a spatial and temporal manner indistinguishable from the endogenous Hox1.1 gene during the period of development when Hox1.1 expression is established. The activation occurs in a strict order in specific ectodermal and mesodermal domains. Within each of these domains the transgene is activated over a period of four hours apparently randomly in single cells. In a following second period, Hox1.1 and transgene expression patterns diverge. In this period, transgene expression persists in many mesodermally derived cells that do not express Hox1.1 indicating the absence of a negative regulatory element in the transgene. The anterior boundary of transgene expression is identical to that of Hox1.1. However, no posterior boundary of transgene expression is set, suggesting that a separate element absent from the transgene specifies this boundary.


Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 279-287 ◽  
Author(s):  
A.W. Puschel ◽  
R. Balling ◽  
P. Gruss

The Hox genes are a class of putative developmental control genes that are thought to be involved in the specification of positional identity along the anteroposterior axis of the vertebrate embryo. It is apparent from their expression pattern that their regulation is dependent upon positional information. In a previous analysis of the Hox-1.1 promoter in transgenic mice, we identified sequences that were sufficient to establish transgene expression in a specific region of the embryo. The construct used, however, did not contain enough regulatory sequences to reproduce all aspects of Hox-1.1 expression. In particular, neither a posterior boundary nor a restriction of expression to prevertebrae was achieved. Here we show correct regulation by Hox-1.1 sequences in transgenic mice and identify the elements responsible for different levels of control. Concomitant with the subdivision of mesodermal cells into different lineages during gastrulation and organogenesis, Hox-1.1 expression is restricted to successively smaller sets of cells. Distinct elements are required at different stages of development to execute this developmental programme. One position-responsive element (130 bp nontranslated leader) was shown to be crucial for the restriction of expression not only along the anteroposterior axis of the embryo, setting the posterior border, but also along the dorsoventral axis of the neural tube and to the lineage giving rise to the prevertebrae. Thus, Hox-1.1 expression is established in a specific region of the embryo and in a specific lineage of the mesoderm by restricting the activity of the promoter by the combined effect of several regulatory elements.


Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


1992 ◽  
Vol 25 (5) ◽  
pp. 1017-1026 ◽  
Author(s):  
Rick A. Friedman ◽  
Allen F. Ryan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document