scholarly journals Interactions of the bacteriophage T4 gene 55 product with Escherichia coli RNA polymerase. Competition with Escherichia coli sigma 70 and release from late T4 transcription complexes following initiation.

1987 ◽  
Vol 262 (25) ◽  
pp. 12365-12371
Author(s):  
K P Williams ◽  
G A Kassavetis ◽  
E P Geiduschek
2001 ◽  
Vol 48 (2) ◽  
pp. 495-510 ◽  
Author(s):  
T Loziiński ◽  
K L Wierzchowski

Footprinting studies of prokaryotic open transcription complexes (RPO), based on oxidation of pyrimidine residues by KMnO4 and/or OsO4 at a single oxidant dose, have suggested that the extent of DNA melting in the transcription bubble region increases in the presence of Mg . In this work, quantitative KMnO4 footprinting in function of the oxidant dose of RPO, using Escherichia coli RNA polymerase (E(sigma)70) at a fully functional synthetic promoter Pa having -35 and -10 consensus hexamers, has been used to determine individual rate constants of oxidation of T residues in this region at 37degrees C in the absence of Mg2+ and in the presence of 10 mM MgCl2, and to evaluate therefrom the effect of Mg2+ on the extent of DNA melting. Population distributions of end-labeled DNA fragments corresponding to oxidized Ts were quantified and analyzed according to the single-hit kinetic model. Pseudo-first order reactivity rate constants, ki, thus obtained demonstrated that Mg2+ ions bound to RPO merely enhanced the reactivity of all 11 oxidizable thymines between the +3 and -11 promoter sites by a position-dependent factor: 3-4 for those located close to the transcription start point +1 in either DNA strand, and about 1.6 for those located more distantly therefrom. On the basis of these observations, we conclude that Mg2+ ions bound to RPO at Pa do not influence the length of the melted DNA region and propose that the higher reactivity of thymines results mainly from lower local repulsive electrostatic barriers to MnO4 diffusion around carboxylate binding sites in the catalytic center of RPO and promoter DNA phosphates.


1994 ◽  
Vol 41 (4) ◽  
pp. 415-419
Author(s):  
M Radłowski ◽  
D Job

The effect of disulfide and sulfhydryl reagents on the rate of abortive and productive elongation has been studied using Escherichia coli RNA polymerase holoenzyme and poly[d(A-T)] as template. In the presence of UTP as a single substrate and UpA as a primer, the enzyme catalyzed efficiently the synthesis of the trinucleotide product UpApU. Incubation of RNA polymerase with 1 mM 2-mercaptoethanol resulted in a 5-fold increase of the rate of UpApU synthesis. In contrast, incubation of the enzyme with 1 mM 5,5'-dithio-bis(2-nitrobenzoic) acid resulted in a 6-fold decrease of the rate of abortive elongation. Determination of the steady state kinetic constants associated with UpApU synthesis disclosed that the disulfide and sulfhydryl reagents mainly affected the rate of UpApU release from the ternary transcription complexes and therefore influenced the stability of such complexes.


2000 ◽  
Vol 299 (5) ◽  
pp. 1217-1230 ◽  
Author(s):  
Gianina Panaghie ◽  
Sarah E. Aiyar ◽  
Kathryn L. Bobb ◽  
Richard S. Hayward ◽  
Pieter L. de Haseth

2006 ◽  
Vol 188 (4) ◽  
pp. 1279-1285 ◽  
Author(s):  
Deborah M. Hinton ◽  
Srilatha Vuthoori ◽  
Rebecca Mulamba

ABSTRACT The N-terminal region (region 1.1) of σ70, the primary σ subunit of Escherichia coli RNA polymerase, is a negatively charged domain that affects the DNA binding properties of σ70 regions 2 and 4. Region 1.1 prevents the interaction of free σ70 with DNA and modulates the formation of stable (open) polymerase/promoter complexes at certain promoters. The bacteriophage T4 AsiA protein is an inhibitor of σ70-dependent transcription from promoters that require an interaction between σ70 region 4 and the −35 DNA element and is the coactivator of transcription at T4 MotA-dependent promoters. Like AsiA, the T4 activator MotA also interacts with σ70 region 4. We have investigated the effect of region 1.1 on AsiA inhibition and MotA/AsiA activation. We show that σ70 region 1.1 is not required for MotA/AsiA activation at the T4 middle promoter P uvsX . However, the rate of AsiA inhibition and of MotA/AsiA activation of polymerase is significantly increased when region 1.1 is missing. We also find that RNA polymerase reconstituted with σ70 that lacks region 1.1 is less stable than polymerase with full-length σ70. Our previous work has demonstrated that the AsiA-inhibited polymerase is formed when AsiA binds to region 4 of free σ70 and then the AsiA/σ70 complex binds to core. Our results suggest that in the absence of region 1.1, there is a shift in the dynamic equilibrium between polymerase holoenzyme and free σ70 plus core, yielding more free σ70 at any given time. Thus, the rate of AsiA inhibition and AsiA/MotA activation increases when RNA polymerase lacks region 1.1 because of the increased availability of free σ70. Previous work has argued both for and against a direct interaction between regions 1.1 and 4. Using an E. coli two-hybrid assay, we do not detect an interaction between these regions. This result supports the idea that the ability of region 1.1 to prevent DNA binding by free σ70 arises through an indirect effect.


Sign in / Sign up

Export Citation Format

Share Document