scholarly journals The presence of protein kinase activity and acceptors of phosphate groups in nonpolysomal cytoplasmic messenger ribonucleoprotein complexes of embryonic chicken muscle.

1979 ◽  
Vol 254 (9) ◽  
pp. 3137-3140
Author(s):  
J Bag ◽  
B H Sells
1988 ◽  
Vol 107 (1) ◽  
pp. 45-56 ◽  
Author(s):  
A Cummings ◽  
J Sommerville

As the oocytes of Xenopus laevis grow and develop they accumulate vast stores of mRNA for use during early embryogenesis. The stored mRNA is stabilized and may be prevented from being translated in oocytes by the binding of a defined set of oocyte-specific proteins to form messenger RNP (mRNP) particles. A key event in the interaction of protein with mRNA is the phosphorylation of those few polypeptides that bind directly to all classes of polyadenylated mRNA. In this study we show that the phosphorylating enzyme (protein kinase), in addition to its target phosphoproteins, is an integral component of the mRNP particles. This association extends through various stages in the formation and use of the mRNP particles. Examination of material from oocytes of an early developmental stage (early stage 1), when the level of accumulated mRNA is low, reveals an excess of protein particles free of RNA, sedimenting at 6-18 S, and containing protein kinase activity and mRNA-binding phosphoproteins. At stages of maximum rate of mRNA accumulation (stages 1 and 2), the phosphoproteins and kinase are found primarily in individual mRNP particles that sediment at 40-80 S. As ribosomes become abundant (stages 2 and 3), the mRNP particles tend to interact with ribosomal subunits, at least in vitro, to form blocked translation initiation complexes that sediment at 80-110 S. These results are compared with observation on stored mRNP in other developmental systems.


1976 ◽  
Vol 35 (03) ◽  
pp. 635-642 ◽  
Author(s):  
M Steiner

SummaryThe effect of thrombin on the phosphorylating activity of platelet membranes was compared to that of trypsin. Preincubation of non-32P phosphorylated platelet membranes with or without either of these two enzymes resulted in a considerable loss of membrane protein kinase activity which was most severe when trypsin was used. Protein kinase activity and endogenous protein acceptors decreased in parallel. 32P-phosphorylated membranes showed a slow but progressive loss of label which was accelerated by trypsin. Thrombin under these conditions prevented the loss of 32P-phosphate. These results are interpreted to indicate a thrombin-induced destruction of a phosphoprotein phosphatase. The protein kinase activity of phosphorylated platelet membranes using endogenous or exogenous protein substrates showed a significant reduction compared to non-phosphorylated membranes suggesting a deactivation of protein kinase by phosphorylation of platelet membranes. Neither thrombin nor trypsin caused a qualitative change in the membrane polypeptides accepting 32P-phosphate but resulted in quantitative alterations of their ability to become phosphorylated.


1989 ◽  
Vol 264 (24) ◽  
pp. 14549-14555 ◽  
Author(s):  
D Kübler ◽  
W Pyerin ◽  
O Bill ◽  
A Hotz ◽  
J Sonka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document