scholarly journals The 45- and 104-kDa forms of phosphatidate phosphatase from Saccharomyces cerevisiae are regulated differentially by phosphorylation via cAMP-dependent protein kinase.

1992 ◽  
Vol 267 (25) ◽  
pp. 18013-18020
Author(s):  
J.J. Quinlan ◽  
J.T. Nickels ◽  
W.I. Wu ◽  
Y.P. Lin ◽  
J.R. Broach ◽  
...  
Genetics ◽  
1995 ◽  
Vol 140 (2) ◽  
pp. 457-467 ◽  
Author(s):  
M Jin ◽  
M Fujita ◽  
B M Culley ◽  
E Apolinario ◽  
M Yamamoto ◽  
...  

Abstract Schizosaccharomyces pombe regulates intracellular cAMP levels, and thus cAMP-dependent protein kinase (PKA) activity, in response to changes in nutrient conditions. Mutations in any of eight git genes inhibit glucose repression of fbp1 transcription, alter the cell morphology, and cause a reduction in the growth rate. The eight git genes encode components of an adenylate cyclase activation pathway, adenylate cyclase itself, and the catalytic subunit of PKA. Three of these genes have been identified in other studies as regulators of meiosis. Here we show that the sck1 gene, cloned as a high copy number suppressor of a mutation in git3, is able to suppress the defects conferred by a mutation in any of these git genes. Sequence analysis suggests that sck1 encodes a protein most closely related to the Saccharomyces cerevisiae SCH9 protein kinase that had previously been identified as a high copy number suppressor of mutations in S. cerevisiae that reduce or eliminate PKA activity. Disruption of the sck1 gene causes a significant delay in exit from stationary phase when combined with a disruption of the pka1 (git6) gene encoding the catalytic subunit of PKA. However, the sck1 disruption by itself has little or no effect upon fbp1 transcription, meiosis, or exit from stationary phase, and does not enhance the constitutive fbp1 transcription observed in a pka1 mutant. Therefore, sck1 appears to function in a redundant fashion to pka1, but to varying degrees, in the pathways regulated by pka1.


Genetics ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 71-80 ◽  
Author(s):  
E J Hubbard ◽  
X L Yang ◽  
M Carlson

Abstract The SNF1 protein kinase and the associated SNF4 protein are required for release of glucose repression in Saccharomyces cerevisiae. To identify functionally related proteins, we selected genes that in multicopy suppress the raffinose growth defect of snf4 mutants. Among the nine genes recovered were two genes from the cAMP-dependent protein kinase (cAPK) pathway, MSI1 and PDE2. Increased dosage of these genes partially compensates for defects in nutrient utilization and sporulation in snf1 and snf4 null mutants, but does not restore invertase expression. These results suggest that SNF1 and cAPK affect some of the same cellular responses to nutrients. To examine the role of the cAPK pathway in regulation of invertase, we assayed mutants in which the cAPK is not modulated by cAMP. Expression of invertase was regulated in response to glucose and was dependent on SNF1 function. Thus, a cAMP-responsive cAPK is dispensable for regulation of invertase.


Sign in / Sign up

Export Citation Format

Share Document