scholarly journals Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by the cAMP-dependent protein kinase catalytic subunits Tpk 1 and Tpk2

FEBS Letters ◽  
1996 ◽  
Vol 385 (1-2) ◽  
pp. 43-46 ◽  
Author(s):  
Isabel Ordiz ◽  
Pilar Herrero ◽  
Rosaura Rodicio ◽  
Fernando Moreno
1999 ◽  
Vol 19 (7) ◽  
pp. 4874-4887 ◽  
Author(s):  
Xuewen Pan ◽  
Joseph Heitman

ABSTRACT In response to nitrogen starvation, diploid cells of the yeastSaccharomyces cerevisiae differentiate to a filamentous growth form known as pseudohyphal differentiation. Filamentous growth is regulated by elements of the pheromone mitogen-activated protein (MAP) kinase cascade and a second signaling cascade involving the receptor Gpr1, the Gα protein Gpa2, Ras2, and cyclic AMP (cAMP). We show here that the Gpr1-Gpa2-cAMP pathway signals via the cAMP-dependent protein kinase, protein kinase A (PKA), to regulate pseudohyphal differentiation. Activation of PKA by mutation of the regulatory subunit Bcy1 enhances filamentous growth. Mutation and overexpression of the PKA catalytic subunits reveal that the Tpk2 catalytic subunit activates filamentous growth, whereas the Tpk1 and Tpk3 catalytic subunits inhibit filamentous growth. The PKA pathway regulates unipolar budding and agar invasion, whereas the MAP kinase cascade regulates cell elongation and invasion. Epistasis analysis supports a model in which PKA functions downstream of the Gpr1 receptor and the Gpa2 and Ras2 G proteins. Activation of filamentous growth by PKA does not require the transcription factors Ste12 and Tec1 of the MAP kinase cascade, Phd1, or the PKA targets Msn2 and Msn4. PKA signals pseudohyphal growth, in part, by regulating Flo8-dependent expression of the cell surface flocculin Flo11. In summary, the cAMP-dependent protein kinase plays an intimate positive and negative role in regulating filamentous growth, and these findings may provide insight into the roles of PKA in mating, morphogenesis, and virulence in other yeasts and pathogenic fungi.


Genetics ◽  
1995 ◽  
Vol 140 (2) ◽  
pp. 457-467 ◽  
Author(s):  
M Jin ◽  
M Fujita ◽  
B M Culley ◽  
E Apolinario ◽  
M Yamamoto ◽  
...  

Abstract Schizosaccharomyces pombe regulates intracellular cAMP levels, and thus cAMP-dependent protein kinase (PKA) activity, in response to changes in nutrient conditions. Mutations in any of eight git genes inhibit glucose repression of fbp1 transcription, alter the cell morphology, and cause a reduction in the growth rate. The eight git genes encode components of an adenylate cyclase activation pathway, adenylate cyclase itself, and the catalytic subunit of PKA. Three of these genes have been identified in other studies as regulators of meiosis. Here we show that the sck1 gene, cloned as a high copy number suppressor of a mutation in git3, is able to suppress the defects conferred by a mutation in any of these git genes. Sequence analysis suggests that sck1 encodes a protein most closely related to the Saccharomyces cerevisiae SCH9 protein kinase that had previously been identified as a high copy number suppressor of mutations in S. cerevisiae that reduce or eliminate PKA activity. Disruption of the sck1 gene causes a significant delay in exit from stationary phase when combined with a disruption of the pka1 (git6) gene encoding the catalytic subunit of PKA. However, the sck1 disruption by itself has little or no effect upon fbp1 transcription, meiosis, or exit from stationary phase, and does not enhance the constitutive fbp1 transcription observed in a pka1 mutant. Therefore, sck1 appears to function in a redundant fashion to pka1, but to varying degrees, in the pathways regulated by pka1.


Sign in / Sign up

Export Citation Format

Share Document