scholarly journals The Effects of Enzyme Synthesis and Stability and of Deoxyribonucleic Acid Replication on the Cellular Levels of Aspartate Transcarbamylase during the Cell Cycle of Eucaryote Chlorella

1973 ◽  
Vol 248 (6) ◽  
pp. 1976-1985 ◽  
Author(s):  
Ahmad A. Vassef ◽  
John B. Flora ◽  
James G. Weeks ◽  
Barbara S. Bibbs ◽  
Robert R. Schmidt
1981 ◽  
Vol 1 (8) ◽  
pp. 673-679
Author(s):  
V A Zakian ◽  
D W Wagner ◽  
W L Fangman

The cytoplasm of Saccharomyces cerevisiae contains two major classes of protein-encapsulated double-stranded ribonucleic acids (dsRNA's), L and M. Replication of L and M dsRNA's was examined in cells arrested in the G1 phase by either alpha-factor, a yeast mating pheromone, or the restrictive temperature for a cell cycle mutant (cdc7). [3H]uracil was added during the arrest periods to cells prelabeled with [14C]uracil, and replication was monitored by determining the ratio of 3H/14C for purified dsRNA's. Like mitochondrial deoxyribonucleic acid, both L and M dsRNA's were synthesized in the G1 arrested cells. The replication of L dsRNA was also examined during the S phase, using cells synchronized in two different ways. Cells containing the cdc7 mutation, treated sequentially with alpha-factor and then the restrictive temperature, enter a synchronous S phase when transferred to permissive temperature. When cells entered the S phase, synthesis of L dsRNA ceased, and little or no synthesis was detected throughout the S phase. Synthesis of L dsRNA was also observed in G1 phase cells isolated from asynchronous cultures by velocity centrifugation. Again, synthesis ceased when cells entered the S phase. These results indicate that L dsRNA replication is under cell cycle control. The control differs from that of mitochondrial deoxyribonucleic acid, which replicates in all phases of the cell cycle, and from that of 2-micron DNA, a multiple-copy plasmid whose replication is confined to the S phase.


1974 ◽  
Vol 139 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Gary S. Stein ◽  
Gale Hunter ◽  
Lena Lavie

By selective dissociation of histones with the ionic detergent sodium deoxycholate, we have demonstrated that these basic chromosomal polypeptides, which are effective inhibitors of transcription, are more tenaciously bound to DNA in mitotic than in S-phase chromatin. Evidence is presented which suggests that cell-cycle-stage-specific non-histone chromosomal proteins can account for such variations in the association of histones with DNA. When chromatin is reconstituted with DNA and histones are pooled from S-phase and mitotic cells and either S-phase or mitotic non-histone chromosomal proteins, a preferential extraction of histones with sodium deoxycholate from chromatin reconstituted with S-phase rather than mitotic non-histone chromosomal proteins is observed. In contrast, the extractability of histones with sodium deoxycholate from nucleohistone complexes reconstituted with DNA pooled from S-phase and mitotic cells and either S-phase or mitotic histones is identical. Since non-histone chromosomal proteins rather than histones are responsible for the differences in chromatin template activity during S-phase and mitosis, we propose that non-histone chromosomal proteins may modify gene expression during the cell cycle by mediating the binding of histones to DNA.


Sign in / Sign up

Export Citation Format

Share Document