scholarly journals Assembly of the sarcoplasmic reticulum. Biosynthesis of calsequestrin in rat skeletal muscle cell cultures

1976 ◽  
Vol 251 (24) ◽  
pp. 7733-7738
Author(s):  
E Zubrzycka ◽  
D H MacLennan
1977 ◽  
Vol 74 (1) ◽  
pp. 287-298 ◽  
Author(s):  
AO Jorgensen ◽  
VI Kalnins ◽  
E Zubrzyca ◽  
DH MacLennan

Immunofluorescent staining techniques were used to study the distribution of the Ca(2) + Mg(2+)-dependent ATPase and calsequestrin in primary cultures of differentiating rat skeletal muscle cells, grown for different periods of time under various culture conditions. In mononucleated myoblasts calsequestrin was detected after 45 h in culture whereas the ATPase was not detected until 60 h. After cell fusion began, both proteins could be identified in all multinucleated cells. Myoblasts grown for longer than 60 h in low Ca(2+) medium contained calsequestrin and the ATPase, even though they were unable to fuse. These studies at the cellular level confirm biochemical findings on the biosynthesis of calsequestrin and the ATPase. Immunofluorescent staining of myoblasts showed that calsequestrin first appears in a well-defined region of the cell near one end of the nucleus. At later times, the staining occupied progressively larger regions adjacent to the nucleus and took on a fibrous appearance. This suggests that calsequestrin first accumulates in the Golgi region and then gradually spreads throughout the cell. In contrast, the ATPase appeared to be concentrated in many small patches or foci throughout the cytoplasm and was never confined to one particular region, although some parts of the cell often stained more intensely than others. In multinucleated cells, alternating dark and fluorescent strands parallel to the longitudinal axis of the cells were evident.


1992 ◽  
Vol 31 (2) ◽  
pp. 285-293 ◽  
Author(s):  
J.-T. Vilquin ◽  
S. Braun ◽  
P. Labouret ◽  
G. Zuber ◽  
C. Tranchant ◽  
...  

2021 ◽  
Author(s):  
Peter Orchard ◽  
Nandini Manickam ◽  
Christa Ventresca ◽  
Swarooparani Vadlamudi ◽  
Arushi Varshney ◽  
...  

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell–specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site–distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.


Sign in / Sign up

Export Citation Format

Share Document