scholarly journals A biochemical genetic study of the role of specific nucleoside kinases in deoxyadenosine phosphorylation by cultured human cells.

1981 ◽  
Vol 256 (2) ◽  
pp. 848-852
Author(s):  
B. Ullman ◽  
B.B. Levinson ◽  
M.S. Hershfield ◽  
D.W. Martin
2008 ◽  
Vol 228 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Takafumi Ochi ◽  
Kayoko Kita ◽  
Toshihide Suzuki ◽  
Alice Rumpler ◽  
Walter Goessler ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jayden Yamakaze ◽  
Zhe Lu

AbstractStrongly oxidative H2O2 is biologically important, but if uncontrolled, would lead to tissue injuries. Lactoperoxidase (LPO) catalyzes the redox reaction of reducing highly reactive H2O2 to H2O while oxidizing thiocyanate (SCN−) to relatively tissue-innocuous hypothiocyanite (OSCN−). SCN− is the only known natural, effective reducing-substrate of LPO; humans normally derive SCN− solely from food. While its enzymatic mechanism is understood, the actual biological role of the LPO-SCN− system in mammals remains unestablished. Our group previously showed that this system protected cultured human cells from H2O2-caused injuries, a basis for the hypothesis that general deficiency of such an antioxidative mechanism would lead to multisystem inflammation and tumors. To test this hypothesis, we globally deleted the Lpo gene in mice. The mutant mice exhibited inflammation and lesions in the cardiovascular, respiratory, digestive or excretory systems, neuropathology, and tumors, with high incidence. Thus, this understudied LPO-SCN− system is an essential protective mechanism in vivo.


2003 ◽  
Vol 21 (3) ◽  
pp. 275-282 ◽  
Author(s):  
H. K. Ghneim ◽  
S. S. Al-Saleh ◽  
F. J. Al-Shammary ◽  
Z. S. Kordee

2002 ◽  
Vol 72 (3) ◽  
pp. 147-153 ◽  
Author(s):  
Kei-Ichi Hirai ◽  
Jie-Hong Pan ◽  
Ying-Bo Shui ◽  
Eriko Simamura ◽  
Hiroki Shimada ◽  
...  

The possible protection of cultured human cells from acute dioxin injury by antioxidants was investigated. The most potent dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), caused vacuolization of the smooth endoplasmic reticulum and Golgi apparatus in cultured human conjunctival epithelial cells and cervical cancer cells. Subsequent nuclear damage included a deep irregular indentation resulting in cell death. A dosage of 30–40 ng/mL TCDD induced maximal intracellular production of H2O2 at 30 minutes and led to severe cell death (0–31% survival) at two hours. A dose of 1.7 mM alpha-tocopherol or 1 mM L-dehydroascorbic acid significantly protected human cells against acute TCDD injuries (78–97% survivals), but vitamin C did not provide this protection. These results indicate that accidental exposure to fatal doses of TCDD causes cytoplasmic free radical production within the smooth endoplasmic reticular systems, resulting in severe cytotoxicity, and that vitamin E and dehydroascorbic acid can protect against TCDD-induced cell damage.


Sign in / Sign up

Export Citation Format

Share Document