scholarly journals Inhibitors of Na+/H+ exchange block epinephrine- and ADP-induced stimulation of human platelet phospholipase C by blockade of arachidonic acid release at a prior step.

1986 ◽  
Vol 261 (19) ◽  
pp. 8660-8666 ◽  
Author(s):  
J D Sweatt ◽  
I A Blair ◽  
E J Cragoe ◽  
L E Limbird
2001 ◽  
Vol 85 (05) ◽  
pp. 882-889 ◽  
Author(s):  
Leslie Lockhart ◽  
Caroline Pampolina ◽  
Brent Nickolaychuk ◽  
Archibald McNicol

SummaryThe release of arachidonic acid is a key component in platelet activation in response to low concentrations (1-20 g/ml) of collagen. The precise mechanism remains elusive although a variety of pathways have been implicated. In the present study the effects of inhibitors of several potentially key enzymes in these pathways have been examined. Collagen (1-10 g/ml) caused maximal platelet aggregation which was accompanied by the release of arachidonic acid, the synthesis of thromboxane A2, and p38MAPK phosphorylation. Preincubation with the dual cyclooxygenase/lipoxygenase inhibitor BW755C inhibited aggregation and thromboxane production, and reduced p38MAPK phosphorylation. A phospholipase C inhibitor, U73122, blocked collagen-induced aggregation and reduced arachidonic acid release, thromboxane synthesis and p38MAPK phosphorylation. Pretreatment with a cytosolic phospholipase A2 inhibitor, AACOCF3, blocked collagen-induced aggregation, reduced the levels of thromboxane formation and p38MAPK phosphorylation but had no significant effect on arachidonic acid release. In contrast inhibition of PKC by Rö31-8220 inhibited collagen-induced aggregation, did not affect p38MAPK phosphorylation but significantly potentiated arachidonic acid release and thromboxane formation. Collagen caused the tyrosine phosphorylation of phospholipase C 2 which was inhibited by pretreatment with U73122, unaffected by AACOCF3 and enhanced by Rö31-8220. These results suggest that cytosolic phospholipase A2 plays no role in the arachidonic acid release in response to collagen. In contrast, the data are consistent with phospholipase C 2 playing a role in an intricately controlled pathway, or multiple pathways, mediating the release of arachidonic acid in collagen-stimulated platelets.


Blood ◽  
1980 ◽  
Vol 55 (3) ◽  
pp. 418-423 ◽  
Author(s):  
MJ Stuart ◽  
JM Gerrard ◽  
JG White

Abstract The effects of in vitro changes in calcium and albumin on human platelet arachidonic acid metabolism were evaluated. Hypoalbuminemia enhanced the conversion of released 14C-arachidonic acid from prelabeled platelet phospholipids to the metabolites of the platelet cyclooxygenase and lipoxygenase pathways. This effect was, however, associated with a decreased release of arachidonic acid in the presence of hypoalbuminemia, such that the overall conversion of released 14C- arachidonic acid to platelet thromboxane B2 was similar in the presence of physiologic albumin concentration (3.5 g/dl) or at decreased albumin concentrations of 0.7 and 0.0 g/dl. External calcium was shown to be important for optimal platelet arachidonic acid release, with maximal release occurring at 1 mM calcium.


2008 ◽  
Vol 294 (5) ◽  
pp. F1129-F1135 ◽  
Author(s):  
Prerna Rastogi ◽  
Alice Rickard ◽  
Nikolay Dorokhov ◽  
David J. Klumpp ◽  
Jane McHowat

Interstitial cystitis (IC) is associated with increased activated mast cell numbers in the bladder and impairment of the barrier function of the urothelium. We stimulated immortalized urothelial cells derived from the inflamed region of IC bladders (SR22A or SM28 abn) or from healthy bladders (PD07i or PD08i) with tryptase and measured phospholipase A2 (PLA2) activity and the resultant release of arachidonic acid and prostaglandin E2 (PGE2). Tryptase stimulation of either PD07i or SR22A resulted in similar increases in PLA2 activity and arachidonic acid release. However, tryptase stimulation of SR22A and SM28 abn did not result in a significant increase in PGE2 release compared with the increase in PGE2 release from tryptase-stimulated PD07i and PD08i cells. Expression of mRNA for cyclooxygenase-2 and PGE synthase was lower and mRNA for 15-hydroxyprostaglandin dehydrogenase was higher in SR22A compared with PD07i, suggesting that both decreased synthesis and increased metabolism are responsible for the lack of a PGE2 response in tryptase-stimulated SR22A cells. Since PGE2 is a cytoprotective eicosanoid, the failure to produce this metabolite in cells isolated from the IC bladder may represent an increased susceptibility to damage by proinfammatory stimuli.


Sign in / Sign up

Export Citation Format

Share Document