scholarly journals DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation. Vol. 279 (2004) 6761-6768

2004 ◽  
Vol 279 (23) ◽  
pp. 24906
Author(s):  
Kenji Inaba ◽  
Yoh-hei Takahashi ◽  
Nobutaka Fujieda ◽  
Kenji Kano ◽  
Hideto Miyoshi ◽  
...  
Keyword(s):  
Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4230
Author(s):  
Andreas Windischbacher ◽  
Luca Steiner ◽  
Ritesh Haldar ◽  
Christof Wöll ◽  
Egbert Zojer ◽  
...  

In recent years, the photophysical properties of crystalline metal-organic frameworks (MOFs) have become increasingly relevant for their potential application in light-emitting devices, photovoltaics, nonlinear optics and sensing. The availability of high-quality experimental data for such systems makes them ideally suited for a validation of quantum mechanical simulations, aiming at an in-depth atomistic understanding of photophysical phenomena. Here we present a computational DFT study of the absorption and emission characteristics of a Zn-based surface-anchored metal-organic framework (Zn-SURMOF-2) containing anthracenedibenzoic acid (ADB) as linker. Combining band-structure and cluster-based simulations on ADB chromophores in various conformations and aggregation states, we are able to provide a detailed explanation of the experimentally observed photophysical properties of Zn-ADB SURMOF-2: The unexpected (weak) red-shift of the absorption maxima upon incorporating ADB chromophores into SURMOF-2 can be explained by a combination of excitonic coupling effects with conformational changes of the chromophores already in their ground state. As far as the unusually large red-shift of the emission of Zn-ADB SURMOF-2 is concerned, based on our simulations, we attribute it to a modification of the exciton coupling compared to conventional H-aggregates, which results from a relative slip of the centers of neighboring chromophores upon incorporation in Zn-ADB SURMOF-2.


2021 ◽  
Vol 12 (4) ◽  
pp. 1228-1235
Author(s):  
Kamal K. Mishra ◽  
Kshetrimayum Borish ◽  
Gulzar Singh ◽  
Prakash Panwaria ◽  
Surajit Metya ◽  
...  
Keyword(s):  

Author(s):  
Francesco Ciaccia ◽  
Ivan Romero ◽  
Rene Serral-Gracia ◽  
Mario Nemirovsky
Keyword(s):  

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Aya Satoh ◽  
Finlay J. Stewart ◽  
Hisaharu Koshitaka ◽  
Hiroshi D. Akashi ◽  
Primož Pirih ◽  
...  

2009 ◽  
Vol 79-82 ◽  
pp. 1245-1248 ◽  
Author(s):  
Pei Lin Han ◽  
Xiao Jing Wang ◽  
Yan Hong Zhao ◽  
Chang He Tang

Electronic structure and optical properties of non-metals (N, S, F, P, Cl) -doped cubic NaTaO3 were investigated systematically by density functional theory (DFT). The results showed that the substitution of (N, S, P, Cl) for O in NaTaO3 was effective in narrowing the band-gap relative to the F-doped NaTaO3. The larger red shift of the absorption edge and the higher visible light absorption at about 520 nm were found for the (N and P)-doped NaTaO3. The excitation from the impurity states to the conduction band may account for the red shift of the absorption edge in an electron-deficiency non-metal doped NaTaO3. The obvious absorption in the visible light region for (N and P)-doped NaTaO3 provides an important guidance for the design and preparation of the visible light photoactive materials.


2012 ◽  
Vol 67 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Bihai Tong ◽  
Jiayan Qiang ◽  
Qunbo Mei ◽  
Hengshan Wang ◽  
Qianfeng Zhang ◽  
...  

Four cationic Ir(III) complexes, [Ir(dpq)2(bpy)]PF6 (1), [Ir(dpq)2(phen)]PF6 (2), [Ir(tfapq)2- (bpy)]PF6 (3), and [Ir(tfapq)2(phen)]PF6 (4) (dpqH = 2,4-diphenylquinoline, tfapqH = 2-(4ʹ-trifluoroacetylphenyl)- 4-phenylquinoline, bpy = 2,2ʹ-bipyridine, phen = 1,10-phenanthroline) have been synthesized and fully characterized. The structure of 4 was also confirmed by single-crystal X-ray diffraction. The electron-acceptor character of the trifluoroacetyl unit leads to a reduced HOMO-LUMO gap and consequently a red-shift of the UV/Vis absorption and luminescence spectra. The solvophobic character of the trifluoroacetyl unit gives rise to a molecule assembly in solution.


1983 ◽  
Vol 27 ◽  
Author(s):  
D.E. Aspnes ◽  
K.K. Tiong ◽  
P.M. Amirtharaj ◽  
F.H. Pollak

ABSTRACTThe red shift and asymmetric broadening of the LO phonon mode of ion-implanted GaAs are both described quantitatively by a spatial correlation model based on a damage-induced relaxation of the momentum selection rule previously used by Richter, Wang, and Ley to describe similar effects in microcrystalline Si. The success of the model for a qualitatively different disorder microstructure suggests it may be possible to evaluate average sizes of crystallographically perfect regions in semiconductors from the phonon lineshapes of their Raman spectra.


Sign in / Sign up

Export Citation Format

Share Document