Long-term cyclic stretch diminishes surfactant secretion in alveolar type II epithelial cells

2006 ◽  
Vol 39 ◽  
pp. S597
Author(s):  
S.P. Arold ◽  
E. Bartolák-Suki ◽  
B. Suki
1994 ◽  
Vol 266 (2) ◽  
pp. L148-L155 ◽  
Author(s):  
H. Blau ◽  
S. Riklis ◽  
V. Kravtsov ◽  
M. Kalina

Cultured alveolar type II cells and pulmonary epithelial (PE) cells in long-term culture were found to secrete colony-stimulating factors (CSF) into the medium in similar fashion to alveolar macrophages. CSF activity was determined by using the in vitro assay for myeloid progenitor cells [colony-forming units in culture (CFU-C)]. Both lipopolisaccharide (LPS) and interleukin-1 alpha (IL-1 alpha) were found to upregulate the secretion 6.5- to 8-fold from alveolar type II cells and macrophages. However, no stimulatory effect of these factors was observed in PE cells that release CSF into the medium constitutively, possibly due to the conditions of long-term culture. The CSF activity was partially neutralized (70% inhibition) by antibodies against murine granulocyte/macrophage (GM)-CSF and IL-3, thus indicating the presence of both GM-CSF and IL-3-like factors in the CSF. However, the presence of other cytokines in the CSF is highly probable. Surfactant-associated protein A (SP-A), which is known to play a central role in surfactant homeostasis and function, was also found to upregulate secretion of CSF (at concentrations of 0.1-5 micrograms/ml) from alveolar type II cells and macrophages. Control cells such as rat peritoneal macrophages, alveolar fibroblasts, and 3T3/NIH cell line could not be elicited by SP-A to release CSF. The results are discussed in relation to the possible participation of the alveolar epithelial cells in various intercellular signaling networks. Our studies suggest that alveolar type II cells and SP-A may play an important regulatory role in the modulation of immune and inflammatory effector cells within the alveolar space.


2009 ◽  
Vol 296 (4) ◽  
pp. L574-L581 ◽  
Author(s):  
Stephen P. Arold ◽  
Erzsébet Bartolák-Suki ◽  
Béla Suki

Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hypothesis that variable stretch patterns imparted on the AEII cells results in enhanced surfactant secretion. AEII cells isolated from rat lungs were exposed to equibiaxial strains of 12.5, 25, or 50% change in surface area (ΔSA) at 3 cycles/min for 15, 30, or 60 min. 3H-labeled phosphatidylcholine release and cell viability were measured 60 min following the onset of stretch. Whereas secretion increased following 15-min stretch at 50% ΔSA and 30-min stretch at 12.5% ΔSA, 60 min of cyclic stretch diminished surfactant secretion regardless of strain. When cells were stretched using a variable strain profile in which the amplitude of each stretch was randomly pulled from a uniform distribution, surfactant secretion was enhanced both at 25 and 50% mean ΔSA with no additional cell injury. Furthermore, at 50% mean ΔSA, there was an optimum level of variability that maximized secretion implying that mechanotransduction in these cells exhibits a phenomenon similar to stochastic resonance. These results suggest that application of variable stretch may enhance surfactant secretion, possibly reducing the risk of ventilator-induced lung injury. Variable stretch-induced mechanotransduction may also have implications for other areas of mechanobiology.


2001 ◽  
Vol 280 (2) ◽  
pp. L191-L202 ◽  
Author(s):  
Yihe Guo ◽  
Cara Martinez-Williams ◽  
Clare E. Yellowley ◽  
Henry J. Donahue ◽  
D. Eugene Rannels

Extracellular matrix (ECM) proteins promote attachment, spreading, and differentiation of cultured alveolar type II epithelial cells. The present studies address the hypothesis that the ECM also regulates expression and function of gap junction proteins, connexins, in this cell population. Expression of cellular fibronectin and connexin (Cx) 43 increase in parallel during early type II cell culture as Cx26 expression declines. Gap junction intercellular communication is established over the same interval. Cells plated on a preformed, type II cell-derived, fibronectin-rich ECM demonstrate accelerated formation of gap junction plaques and elevated gap junction intercellular communication. These effects are blocked by antibodies against fibronectin, which cause redistribution of Cx43 protein from the plasma membrane to the cytoplasm. Conversely, cells cultured on a laminin-rich ECM, Matrigel, express low levels of Cx43 but high levels of Cx26, reflecting both transcriptional and translational regulation. Cx26 and Cx43 thus demonstrate reciprocal regulation by ECM constituents.


2010 ◽  
Vol 26 (6) ◽  
pp. 367-374 ◽  
Author(s):  
Tiffany M Robb ◽  
Michael J Rogers ◽  
Suann S Woodward ◽  
Simon S Wong ◽  
Mark L Witten

2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2860
Author(s):  
Dennis M. L. W. Kruk ◽  
Marissa Wisman ◽  
Jacobien A. Noordhoek ◽  
Mehmet Nizamoglu ◽  
Marnix R. Jonker ◽  
...  

COPD is characterized by irreversible lung tissue damage. We hypothesized that lung-derived mesenchymal stromal cells (LMSCs) reduce alveolar epithelial damage via paracrine processes, and may thus be suitable for cell-based strategies in COPD. We aimed to assess whether COPD-derived LMSCs display abnormalities. LMSCs were isolated from lung tissue of severe COPD patients and non-COPD controls. Effects of LMSC conditioned-medium (CM) on H2O2-induced, electric field- and scratch-injury were studied in A549 and NCI-H441 epithelial cells. In organoid models, LMSCs were co-cultured with NCI-H441 or primary lung cells. Organoid number, size and expression of alveolar type II markers were assessed. Pre-treatment with LMSC-CM significantly attenuated oxidative stress-induced necrosis and accelerated wound repair in A549. Co-culture with LMSCs supported organoid formation in NCI-H441 and primary epithelial cells, resulting in significantly larger organoids with lower type II-marker positivity in the presence of COPD-derived versus control LMSCs. Similar abnormalities developed in organoids from COPD compared to control-derived lung cells, with significantly larger organoids. Collectively, this indicates that LMSCs’ secretome attenuates alveolar epithelial injury and supports epithelial repair. Additionally, LMSCs promote generation of alveolar organoids, with abnormalities in the supportive effects of COPD-derived LMCS, reflective of impaired regenerative responses of COPD distal lung cells.


1994 ◽  
Vol 266 (4) ◽  
pp. L375-L381 ◽  
Author(s):  
M. S. Pian ◽  
L. G. Dobbs

To investigate how G proteins regulate surfactant secretion, we subjected rat alveolar type II cells to conditions known to activate or to inactivate G proteins. AlF-4, which activates G proteins, inhibited secretion in intact cells. Guanosine-5'-O-(3-thiotriphosphate), which activates G proteins in permeabilized cells, stimulated secretion at basal cytosolic [Ca2+], but inhibited secretion at higher [Ca2+]. In contrast, guanosine-5'-O-(2-thiodiphosphate) (GDP beta S), which inactivates G proteins, stimulated secretion at each [Ca2+] tested. Because treatment with GDP beta S stimulated secretion at basal cytosolic [Ca2+], surfactant secretion appears to be subject to G protein-regulated tonic inhibition. Pertussis toxin (PTX) inhibited terbutaline- and ionomycin-stimulated secretion in intact cells, but did not inhibit secretion stimulated by either forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate. Inhibition by PTX of terbutaline-stimulated, but not 8-bromoadenosine 3',5'-cyclic monophosphate- or forskolin-stimulated secretion, suggests that PTX-sensitive G proteins regulate beta-adrenergic-stimulated surfactant secretion proximal to second messenger generation. Inhibition of ionomycin-stimulated secretion, however, suggests that PTX-sensitive G proteins may also regulate non-receptor-mediated secretory events.


Sign in / Sign up

Export Citation Format

Share Document