scholarly journals Paracrine Regulation of Alveolar Epithelial Damage and Repair Responses by Human Lung-Resident Mesenchymal Stromal Cells

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2860
Author(s):  
Dennis M. L. W. Kruk ◽  
Marissa Wisman ◽  
Jacobien A. Noordhoek ◽  
Mehmet Nizamoglu ◽  
Marnix R. Jonker ◽  
...  

COPD is characterized by irreversible lung tissue damage. We hypothesized that lung-derived mesenchymal stromal cells (LMSCs) reduce alveolar epithelial damage via paracrine processes, and may thus be suitable for cell-based strategies in COPD. We aimed to assess whether COPD-derived LMSCs display abnormalities. LMSCs were isolated from lung tissue of severe COPD patients and non-COPD controls. Effects of LMSC conditioned-medium (CM) on H2O2-induced, electric field- and scratch-injury were studied in A549 and NCI-H441 epithelial cells. In organoid models, LMSCs were co-cultured with NCI-H441 or primary lung cells. Organoid number, size and expression of alveolar type II markers were assessed. Pre-treatment with LMSC-CM significantly attenuated oxidative stress-induced necrosis and accelerated wound repair in A549. Co-culture with LMSCs supported organoid formation in NCI-H441 and primary epithelial cells, resulting in significantly larger organoids with lower type II-marker positivity in the presence of COPD-derived versus control LMSCs. Similar abnormalities developed in organoids from COPD compared to control-derived lung cells, with significantly larger organoids. Collectively, this indicates that LMSCs’ secretome attenuates alveolar epithelial injury and supports epithelial repair. Additionally, LMSCs promote generation of alveolar organoids, with abnormalities in the supportive effects of COPD-derived LMCS, reflective of impaired regenerative responses of COPD distal lung cells.

2000 ◽  
Vol 279 (6) ◽  
pp. L1110-L1119 ◽  
Author(s):  
Ralf Wodopia ◽  
Hyun Soo Ko ◽  
Javiera Billian ◽  
Rudolf Wiesner ◽  
Peter Bärtsch ◽  
...  

Fluid reabsorption from alveolar space is driven by active Na reabsorption via epithelial Na channels (ENaCs) and Na-K-ATPase. Both are inhibited by hypoxia. Here we tested whether hypoxia decreases Na transport by decreasing the number of copies of transporters in alveolar epithelial cells and in lungs of hypoxic rats. Membrane fractions were prepared from A549 cells exposed to hypoxia (3% O2) as well as from whole lung tissue and alveolar type II cells from rats exposed to hypoxia. Transport proteins were measured by Western blot analysis. In A549 cells, α1- and β1-Na-K-ATPase, Na/K/2Cl cotransport, and ENaC proteins decreased during hypoxia. In whole lung tissue, α1-Na-K-ATPase and Na/K/2Cl cotransport decreased. α- and β-ENaC mRNAs also decreased in hypoxic lungs. Similar results were seen in alveolar type II cells from hypoxic rats. These results indicate a slow decrease in the amount of Na-transporting proteins in alveolar epithelial cells during exposure to hypoxia that also occurs in vivo in lungs from hypoxic animals. The reduced number of transporters might account for the decreased transport activity and impaired edema clearance in hypoxic lungs.


2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


1994 ◽  
Vol 266 (2) ◽  
pp. L148-L155 ◽  
Author(s):  
H. Blau ◽  
S. Riklis ◽  
V. Kravtsov ◽  
M. Kalina

Cultured alveolar type II cells and pulmonary epithelial (PE) cells in long-term culture were found to secrete colony-stimulating factors (CSF) into the medium in similar fashion to alveolar macrophages. CSF activity was determined by using the in vitro assay for myeloid progenitor cells [colony-forming units in culture (CFU-C)]. Both lipopolisaccharide (LPS) and interleukin-1 alpha (IL-1 alpha) were found to upregulate the secretion 6.5- to 8-fold from alveolar type II cells and macrophages. However, no stimulatory effect of these factors was observed in PE cells that release CSF into the medium constitutively, possibly due to the conditions of long-term culture. The CSF activity was partially neutralized (70% inhibition) by antibodies against murine granulocyte/macrophage (GM)-CSF and IL-3, thus indicating the presence of both GM-CSF and IL-3-like factors in the CSF. However, the presence of other cytokines in the CSF is highly probable. Surfactant-associated protein A (SP-A), which is known to play a central role in surfactant homeostasis and function, was also found to upregulate secretion of CSF (at concentrations of 0.1-5 micrograms/ml) from alveolar type II cells and macrophages. Control cells such as rat peritoneal macrophages, alveolar fibroblasts, and 3T3/NIH cell line could not be elicited by SP-A to release CSF. The results are discussed in relation to the possible participation of the alveolar epithelial cells in various intercellular signaling networks. Our studies suggest that alveolar type II cells and SP-A may play an important regulatory role in the modulation of immune and inflammatory effector cells within the alveolar space.


2018 ◽  
Vol 6 (16) ◽  
pp. e13831 ◽  
Author(s):  
Matthew Schwede ◽  
Erin M. Wilfong ◽  
Rachel L. Zemans ◽  
Patty J. Lee ◽  
Claudia dos Santos ◽  
...  

1994 ◽  
Vol 267 (3) ◽  
pp. L263-L270 ◽  
Author(s):  
D. Rotin ◽  
B. J. Goldstein ◽  
C. A. Fladd

The role of tyrosine kinases in regulating cell proliferation, differentiation, and development has been well documented. In contrast, little is known about the role of protein tyrosine phosphatases (PTPs) in mammalian development. To identify PTPs that may be involved in lung development, we have isolated (by polymerase chain reaction) from rat fetal alveolar epithelial cells a cDNA fragment which was identified as the recently cloned tyrosine phosphatase LAR-PTP2. Analysis of tissue expression of LAR-PTP2 identified a approximately 7.5-kb message in the lung, which is also expressed weakly in brain, and an alternatively spliced approximately 6.0-kb message (LAR-PTP2B) expressed in brain. In the fetal lung, LAR-PTP2 was preferentially expressed in lung epithelial (but not fibroblast) cells grown briefly in primary culture, and its expression was tightly regulated during lung development, peaking at 20 days of gestational age (term = 22 days), when mature alveolar type II epithelium first appears. Accordingly, immunoblot analysis revealed high expression of endogenous LAR-PTP2 protein in alveolar epithelial cells from 21-day gestation fetuses. LAR-PTP2 was also expressed in lungs of newborn rats, but transcripts (and protein) were barely detectable in adult lungs and in the nonproliferating adult alveolar type II cells. Interestingly, expression was restored in the transformed adult type II-like A549 cells. These results suggest that LAR-PTP2 may play a role in the proliferation and/or differentiation of epithelial cells during lung development.


2020 ◽  
Author(s):  
Jingyu Chen ◽  
Huijuan Wu ◽  
Yuanyuan Yu ◽  
Nan Tang

We detected active alveolar regrowth in the lung of a 58-year-old COVID-19 patient who underwent lung transplantation due to severe lung hemorrhage. Specifically, immunohistological and scanning electronic microscopy analyses revealed that alveolar type II epithelial cells (AT2 cells) accumulate in response to viral pneumonia and that these AT2 cells actively proliferate and differentiate into squamous AT1-like alveolar epithelial cells. Thus, our work establishes that alveolar regrowth does occur in post-COVID-19 injury adult human lungs.


2010 ◽  
Vol 298 (6) ◽  
pp. L768-L774 ◽  
Author(s):  
Julia Varet ◽  
Samantha K. Douglas ◽  
Laura Gilmartin ◽  
Andrew R. L. Medford ◽  
David O. Bates ◽  
...  

Vascular endothelial cell growth factor (VEGF) is a potent mitogen and permogen that increases in the plasma and decreases in the alveolar space in respiratory diseases such as acute respiratory distress syndrome (ARDS). This observation has led to controversy over the role of this potent molecule in lung physiology and disease. We hypothesized that some of the VEGF previously detected in normal lung may be of the anti-angiogenic family (VEGFxxxb) with significant potential effects on VEGF bioactivity. VEGFxxxb protein expression was assessed by indirect immunohistochemistry in normal and ARDS tissue. Expression of VEGFxxxb was also detected by immunoblotting in normal lung tissue, primary human alveolar type II (ATII) cells, and bronchoalveolar lavage (BAL) fluid in normal subjects and by ELISA in normal, “at risk,” and ARDS subjects. The effect of VEGF165 and VEGF165b on both human primary endothelial cells and alveolar epithelial cell proliferation was assessed by [3H]thymidine uptake. We found that VEGF165b was widely expressed in normal healthy lung tissue but is reduced in ARDS lung. VEGF121b and VEGF165b were present in whole lung, BAL, and ATII lysate. The proliferative effect of VEGF165 on both human primary endothelial cells and human alveolar epithelial cells was significantly inhibited by VEGF165b ( P < 0.01). These data demonstrate that the novel VEGFxxxb family members are expressed in normal lung and are reduced in ARDS. A specific functional effect on primary human endothelial and alveolar epithelial cells has also been shown. These data suggest that the VEGFxxxb family may have a role in repair after lung injury.


2007 ◽  
Vol 293 (1) ◽  
pp. L105-L113 ◽  
Author(s):  
Ashish K. Sharma ◽  
Lucas G. Fernandez ◽  
Alaa S. Awad ◽  
Irving L. Kron ◽  
Victor E. Laubach

Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-α and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-α further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-α) by MLE-12 cells, whereas H/R induced TNF-α, MCP-1, RANTES, MIP-1α, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-α by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-α, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.


Sign in / Sign up

Export Citation Format

Share Document