Combined effect of volume change and internal heat and mass transfer on gas-phase reactions in porous catalysts

1966 ◽  
Vol 5 (1) ◽  
pp. 44-54 ◽  
Author(s):  
V WEEKMANJR
2014 ◽  
Vol 541-542 ◽  
pp. 722-726
Author(s):  
Jun Ming Hou ◽  
De Xu Yang ◽  
Ke Jia Wu

In this paper the drying process of ginkgo biloba is discussed. The process combined effect of convective Heat and mass transfer on hydromagnetic electrically conducting viscous, how to improve the ability of drying is an important problem. The heat transmission for drying process is discussed. The parameter of drying process is determined. The ginkgo biloba drying machine is developed and the key part of drying machine is designed. The whole drying machine is developed, which can enhance the ability of medical industry. The study can help the Optimization of drying process and the level of the ginkgo biloba drying.


1987 ◽  
Vol 109 (2) ◽  
pp. 89-93 ◽  
Author(s):  
P. Gandhidasan ◽  
M. Rifat Ullah ◽  
C. F. Kettleborough

Heat and mass transfer analysis between a desiccant-air contact system in a packed tower has been studied in application to air dehumidification employing liquid desiccant, namely calcium chloride. Ceramic 2 in. Raschig rings are used as the packing material. To predict the tower performance, a steady-state model which considers the heat and mass transfer resistances of the gas phase and the mass transfer resistance of the liquid phase is developed. The governing equations are solved on a digital computer to simulate the performance of the tower. The various parameters such as the effect of liquid concentration and temperature, air temperature and humidity and the rates of flow of air and liquid affecting the tower performance have been discussed.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Raj Nandkeolyar ◽  
Peri K. Kameswaran ◽  
Sachin Shaw ◽  
Precious Sibanda

We investigated heat and mass transfer on water based nanofluid due to the combined effects of homogeneous–heterogeneous reactions, an external magnetic field and internal heat generation. The flow is generated by the movement of a linearly stretched surface, and the nanofluid contains nanoparticles of copper and gold. Exact solutions of the transformed model equations were obtained in terms of hypergeometric functions. To gain more insights regarding subtle impact of fluid and material parameters on the heat and mass transfer characteristics, and the fluid properties, the equations were further solved numerically using the matlab bvp4c solver. The similarities and differences in the behavior, including the heat and mass transfer characteristics, of the copper–water and gold–water nanofluids with respect to changes in the flow parameters were investigated. Finally, we obtained the numerical values of the skin friction and heat transfer coefficients.


Author(s):  
Ekaterina Valer'evna Fomenko ◽  
Albert Hamed-Harisovich Nugmanov ◽  
Thi Sen Nguyen ◽  
Aleksanyan Igor Yuryevich Aleksanyan

The article touches upon the application of the numerical finite difference method for solving Navier-Stokes equation in case of one-dimensional problem of passing a cooled viscoelastic material inside circular nozzles. There have been analyzed the specific features of using the method and presented the results of its application. The object of study was not chosen at random, because viscous properties of raw gluten are variable and depend on the temperature, chemical composition and properties of the feedstock. Working not properly with the object of research (phenomenon, process), but with its model helps to characterize its properties and behavior in various situations relatively quickly and without significant costs. The need to identify patterns of internal heat and mass transfer, which is based on studying the kinetics of the process, is obvious for physic-mathematical modeling of heat and mass transfer processes of wheat gluten granulation, in particular, analyzing the mechanism of moisture removal during its drying under radiation power supply. The results of the conducted research are consistent with the available data on the subject, and the suggested approach to solving the problem of choosing rational hydrodynamic regimes has been applied due to the difficulty of experimental determining the velocity fields and problematic analyzing the system of hydrodynamic differential Navier-Stokes equations with variable proportionality ratios.


2011 ◽  
Vol 20 (2) ◽  
pp. 192-200 ◽  
Author(s):  
M. M. Grigoryeva ◽  
G. V. Kuznetsov ◽  
P. A. Strizhak

Author(s):  
You-Rong Li ◽  
Dan-Ling Zeng

Based on non-equilibrium thermodynamic theory and combined with the conservation laws, a comprehensive theoretical model was established to describe heat and mass transfer during convective drying process, and numerical calculation was performed. The results show that: (a) the external convective heat and mass transfer may be treated as the conductive heat transfer with internal heat source and the molecular mass diffusion with internal mass source, respectively, and the ability of heat and mass transfer mainly depends on the strength of the heat source and mass source; the higher the temperature of the drying media, the lower the strength of the internal heat source, but the higher that of the internal mass sources; (b) the evaporation of internal water takes place inside the whole material, and the molecular mass diffusion of the internal vapor is in the direction of decreasing mass transfer potential, not along the decreasing partial pressure of vapor.


Sign in / Sign up

Export Citation Format

Share Document