Supercritical-fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons with a simple capillary direct interface

1989 ◽  
Vol 468 ◽  
pp. 115-125 ◽  
Author(s):  
Steven B. Hawthorne ◽  
David J. Miller
2019 ◽  
Author(s):  
Temidayo O Elufisan ◽  
Isabel C Rodríguez-Luna ◽  
Omotayo O Oyedara ◽  
Alejandro Sánchez-Varela ◽  
Armando Hernandez Mendoza ◽  
...  

Background: Stenotrophomonas are ubiquitous gram-negative bacteria which survive in a wide range of environments. They can use many substances for their growth and are known to be intrinsically resistant to many antimicrobial agents. They have been tested for biotechnological applications, bioremediation and antimicrobial agents because of their recalcitrant nature to many toxic compounds. Method. Stenotrophomonas sp. Pemsol was isolated from a crude oil contaminated soil. The capability of this isolate to tolerate and degrade polycyclic aromatic hydrocarbons (PAHs) (anthracene, anthraquinone, biphenyl, naphthalene, phenanthrene, phenanthridine and xylene) was evaluated on Bush Nell Hass medium containing PAHs as the unique carbon sources. The metabolites formed after 30-day degradation of naphthalene by Pemsol were analyzed using Fourier Transform Infra-red Spectroscopic (FTIR), Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). Results. Complete degradation of naphthalene at a concentration of 1 mg/mL was obtained and a newly formed catechol peak obtained from the UPLC-MS and GC-MS confirmed the degradation. The strain Pemsol lacked the ability to produce biosurfactant so that it cannot bio-emulsify PAHs. The whole genome analysis of Stenotrophomonas sp. Pemsol revealed a wealth of genes for hydrocarbon utilization and interaction with the environment and the presence of 147 genes associated with the degradation of PAHs, some of which are strain-specific on the genomic islands. Few genes are associated with bio-emulsification indicated that Pemsol without biosurfactant production has a genetic basis. This is the first report of the complete genome analysis sequence of a PAH-degrading Stenotrophomonas. Stenotrophomonas sp. Pemsol possesses features that makes it a good bacterium for genetic engineering and will therefore be a good tool for the remediation of crude oil or PAH-contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document